Normalized defining polynomial
\( x^{18} - 3 x^{17} - 42 x^{15} - 110 x^{14} + 332 x^{13} + 219 x^{12} + 1276 x^{11} - 3494 x^{10} - 12539 x^{9} + 24077 x^{8} + 22738 x^{7} + 12556 x^{6} - 9361 x^{5} - 277423 x^{4} + 8295 x^{3} + 548514 x^{2} + 236088 x - 60831 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(128607482636630365539205392633856=2^{12}\cdot 7^{12}\cdot 197^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{11} + \frac{1}{15} a^{10} - \frac{2}{15} a^{9} - \frac{2}{15} a^{8} + \frac{2}{15} a^{7} + \frac{7}{15} a^{6} + \frac{2}{15} a^{5} + \frac{7}{15} a^{4} + \frac{1}{15} a^{3} + \frac{2}{5} a^{2} + \frac{4}{15} a - \frac{2}{5}$, $\frac{1}{15} a^{12} + \frac{2}{15} a^{10} - \frac{1}{15} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{4}{15} a^{4} - \frac{1}{3} a^{3} + \frac{1}{5} a^{2} - \frac{1}{3} a + \frac{2}{5}$, $\frac{1}{15} a^{13} - \frac{2}{15} a^{10} - \frac{2}{15} a^{9} - \frac{1}{15} a^{8} + \frac{1}{15} a^{7} - \frac{4}{15} a^{6} - \frac{4}{15} a^{4} + \frac{1}{15} a^{3} - \frac{2}{15} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{45} a^{14} - \frac{1}{45} a^{13} + \frac{1}{45} a^{11} + \frac{1}{15} a^{10} - \frac{1}{9} a^{9} - \frac{4}{45} a^{8} - \frac{14}{45} a^{7} + \frac{2}{9} a^{6} - \frac{13}{45} a^{5} - \frac{19}{45} a^{4} + \frac{8}{45} a^{2} + \frac{2}{15} a$, $\frac{1}{45} a^{15} - \frac{1}{45} a^{13} + \frac{1}{45} a^{12} + \frac{1}{45} a^{11} - \frac{1}{9} a^{10} - \frac{1}{15} a^{9} + \frac{1}{15} a^{8} + \frac{4}{9} a^{7} - \frac{1}{5} a^{6} - \frac{8}{45} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{11}{45} a^{2} - \frac{7}{15} a + \frac{2}{5}$, $\frac{1}{135} a^{16} + \frac{1}{135} a^{15} + \frac{1}{135} a^{14} + \frac{4}{135} a^{13} + \frac{2}{135} a^{12} + \frac{4}{135} a^{11} + \frac{22}{135} a^{10} + \frac{11}{135} a^{9} + \frac{4}{45} a^{8} - \frac{59}{135} a^{7} - \frac{2}{5} a^{6} - \frac{62}{135} a^{5} - \frac{8}{27} a^{4} - \frac{2}{135} a^{3} + \frac{4}{9} a^{2} - \frac{1}{15} a + \frac{2}{5}$, $\frac{1}{24817811607037843073222439235324800434625} a^{17} - \frac{374473961809671092581283530963503401}{551506924600840957182720871896106676325} a^{16} + \frac{550880762036680123006164694704039487}{551506924600840957182720871896106676325} a^{15} - \frac{20838439249805178577747053079161437474}{8272603869012614357740813078441600144875} a^{14} - \frac{211519562182005910015531171588619475236}{24817811607037843073222439235324800434625} a^{13} - \frac{784242067461703481432093960762848103506}{24817811607037843073222439235324800434625} a^{12} + \frac{19231602601406427784895894111891105473}{919178207668068261971201453160177793875} a^{11} + \frac{3706291907899329277467245744136564244369}{24817811607037843073222439235324800434625} a^{10} - \frac{2531346639328282105459078247753978303492}{24817811607037843073222439235324800434625} a^{9} - \frac{141228741688393373546817860299803790229}{992712464281513722928897569412992017385} a^{8} - \frac{11415814052893366278215256720161573741323}{24817811607037843073222439235324800434625} a^{7} - \frac{2991934232794563231234769856839759071671}{24817811607037843073222439235324800434625} a^{6} - \frac{7991774021267511685785229873402195583837}{24817811607037843073222439235324800434625} a^{5} - \frac{7723307837623354896905139374376292378132}{24817811607037843073222439235324800434625} a^{4} + \frac{10458353600099435894700755107045742372396}{24817811607037843073222439235324800434625} a^{3} - \frac{472582278546783605487613689463749189329}{8272603869012614357740813078441600144875} a^{2} + \frac{593132930860532797870456077605865188852}{2757534623004204785913604359480533381625} a + \frac{343768254202348486610463512738720836591}{919178207668068261971201453160177793875}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1033559423.06 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.9653.1, 3.3.788.1, 3.3.38612.2, 3.3.38612.1, 6.2.93180409.3, 9.9.11340523913674816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 197 | Data not computed | ||||||