/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 4*x^17 + 17*x^15 - 19*x^14 + x^13 + 5*x^12 - 30*x^11 + 54*x^10 - 44*x^9 + 108*x^8 - 120*x^7 + 40*x^6 + 16*x^5 - 608*x^4 + 1088*x^3 - 1024*x + 512, 18, 718, [6, 6], 12806253783510853046407744, [2, 193, 229], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/2*a^8 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2, 1/2*a^9 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3, 1/4*a^10 + 1/4*a^7 + 1/4*a^6 + 1/4*a^5 + 1/4*a^4 - 1/2*a^3 - 1/2*a^2, 1/4*a^11 - 1/4*a^8 + 1/4*a^7 + 1/4*a^6 - 1/4*a^5 - 1/2*a^2, 1/8*a^12 + 1/8*a^9 + 1/8*a^8 - 3/8*a^7 + 1/8*a^6 - 1/4*a^5 - 1/4*a^4 - 1/2*a^3 - 1/2*a^2, 1/16*a^13 + 1/16*a^10 + 1/16*a^9 - 3/16*a^8 - 7/16*a^7 + 3/8*a^6 + 3/8*a^5 + 1/4*a^4 + 1/4*a^3 - 1/2*a, 1/32*a^14 + 1/32*a^11 + 1/32*a^10 + 5/32*a^9 - 7/32*a^8 + 3/16*a^7 + 7/16*a^6 - 1/8*a^5 - 1/8*a^4 + 1/4*a^3 - 1/4*a^2 - 1/2*a, 1/64*a^15 + 1/64*a^12 + 1/64*a^11 + 5/64*a^10 + 9/64*a^9 + 3/32*a^8 + 7/32*a^7 + 3/16*a^6 + 3/16*a^5 - 1/8*a^4 - 3/8*a^3 - 1/4*a^2 - 1/2*a, 1/17792*a^16 - 23/4448*a^15 + 1/556*a^14 - 391/17792*a^13 + 965/17792*a^12 - 1015/17792*a^11 + 1493/17792*a^10 + 1889/8896*a^9 - 481/8896*a^8 - 57/4448*a^7 + 1771/4448*a^6 + 375/2224*a^5 - 155/2224*a^4 - 365/1112*a^3 - 75/556*a^2 + 47/139*a + 2/139, 1/35584*a^17 - 23/8896*a^15 + 329/35584*a^14 + 577/35584*a^13 - 1751/35584*a^12 + 3189/35584*a^11 + 1345/17792*a^10 - 3779/17792*a^9 + 891/8896*a^8 - 2083/8896*a^7 - 1837/4448*a^6 - 961/4448*a^5 + 11/2224*a^4 - 81/278*a^3 + 119/556*a^2 + 17/278*a - 47/139], 0, 1, [], 1, [ (2025)/(4448)*a^(17) - (11681)/(8896)*a^(16) - (12825)/(8896)*a^(15) + (13025)/(2224)*a^(14) - (14743)/(8896)*a^(13) - (87)/(139)*a^(12) - (805)/(4448)*a^(11) - (7063)/(556)*a^(10) + (74503)/(8896)*a^(9) - (46025)/(4448)*a^(8) + (182041)/(4448)*a^(7) - (25007)/(2224)*a^(6) + (37989)/(2224)*a^(5) + (8699)/(1112)*a^(4) - (280209)/(1112)*a^(3) + (51045)/(278)*a^(2) + (27837)/(139)*a - (23052)/(139) , (4841)/(17792)*a^(17) - (273)/(278)*a^(16) - (5693)/(8896)*a^(15) + (82825)/(17792)*a^(14) - (32911)/(17792)*a^(13) - (27117)/(17792)*a^(12) - (12553)/(17792)*a^(11) - (41121)/(4448)*a^(10) + (39703)/(4448)*a^(9) - (7889)/(2224)*a^(8) + (69669)/(2224)*a^(7) - (12667)/(1112)*a^(6) + (115)/(139)*a^(5) - (3775)/(556)*a^(4) - (203969)/(1112)*a^(3) + (100809)/(556)*a^(2) + (22416)/(139)*a - (22263)/(139) , (2229)/(8896)*a^(17) - (11967)/(17792)*a^(16) - (7507)/(8896)*a^(15) + (26179)/(8896)*a^(14) - (13333)/(17792)*a^(13) - (1699)/(17792)*a^(12) + (1717)/(17792)*a^(11) - (117053)/(17792)*a^(10) + (8495)/(2224)*a^(9) - (56825)/(8896)*a^(8) + (46181)/(2224)*a^(7) - (23901)/(4448)*a^(6) + (12565)/(1112)*a^(5) + (16969)/(2224)*a^(4) - (72661)/(556)*a^(3) + (47557)/(556)*a^(2) + (27335)/(278)*a - (10974)/(139) , (15493)/(35584)*a^(17) - (23811)/(17792)*a^(16) - (12467)/(8896)*a^(15) + (226173)/(35584)*a^(14) - (57969)/(35584)*a^(13) - (68441)/(35584)*a^(12) + (2043)/(35584)*a^(11) - (123699)/(8896)*a^(10) + (176735)/(17792)*a^(9) - (31999)/(4448)*a^(8) + (369235)/(8896)*a^(7) - (17023)/(2224)*a^(6) + (16389)/(4448)*a^(5) + (5209)/(556)*a^(4) - (301059)/(1112)*a^(3) + (28615)/(139)*a^(2) + (68447)/(278)*a - (28807)/(139) , (609)/(4448)*a^(17) - (1829)/(4448)*a^(16) - (4731)/(8896)*a^(15) + (9227)/(4448)*a^(14) - (355)/(2224)*a^(13) - (8307)/(8896)*a^(12) + (1417)/(8896)*a^(11) - (43957)/(8896)*a^(10) + (23829)/(8896)*a^(9) - (6367)/(4448)*a^(8) + (57009)/(4448)*a^(7) + (3703)/(2224)*a^(6) - (4463)/(2224)*a^(5) + (6789)/(1112)*a^(4) - (103449)/(1112)*a^(3) + (30785)/(556)*a^(2) + (13507)/(139)*a - (9123)/(139) , (12701)/(35584)*a^(17) - (8973)/(8896)*a^(16) - (1349)/(1112)*a^(15) + (165573)/(35584)*a^(14) - (39303)/(35584)*a^(13) - (35907)/(35584)*a^(12) + (12937)/(35584)*a^(11) - (183751)/(17792)*a^(10) + (118091)/(17792)*a^(9) - (64881)/(8896)*a^(8) + (270779)/(8896)*a^(7) - (25345)/(4448)*a^(6) + (33437)/(4448)*a^(5) + (27639)/(2224)*a^(4) - (225989)/(1112)*a^(3) + (19655)/(139)*a^(2) + (49097)/(278)*a - (20544)/(139) , (311)/(2224)*a^(17) - (2127)/(8896)*a^(16) - (1653)/(2224)*a^(15) + (5057)/(4448)*a^(14) + (4321)/(8896)*a^(13) - (1863)/(8896)*a^(12) + (9187)/(8896)*a^(11) - (31913)/(8896)*a^(10) - (241)/(2224)*a^(9) - (1953)/(556)*a^(8) + (13083)/(2224)*a^(7) + (5831)/(1112)*a^(6) + (3209)/(1112)*a^(5) + (5481)/(278)*a^(4) - (36985)/(556)*a^(3) + (327)/(556)*a^(2) + (9297)/(139)*a - (4273)/(139) , (7921)/(35584)*a^(17) - (1535)/(2224)*a^(16) - (363)/(556)*a^(15) + (112057)/(35584)*a^(14) - (35759)/(35584)*a^(13) - (21723)/(35584)*a^(12) - (8879)/(35584)*a^(11) - (117305)/(17792)*a^(10) + (89619)/(17792)*a^(9) - (39159)/(8896)*a^(8) + (191867)/(8896)*a^(7) - (28931)/(4448)*a^(6) + (27221)/(4448)*a^(5) + (2553)/(2224)*a^(4) - (145991)/(1112)*a^(3) + (29481)/(278)*a^(2) + (30343)/(278)*a - (13346)/(139) , (17121)/(35584)*a^(17) - (21227)/(17792)*a^(16) - (8563)/(4448)*a^(15) + (196577)/(35584)*a^(14) - (16181)/(35584)*a^(13) - (38633)/(35584)*a^(12) + (46627)/(35584)*a^(11) - (59983)/(4448)*a^(10) + (105321)/(17792)*a^(9) - (46883)/(4448)*a^(8) + (311157)/(8896)*a^(7) + (1283)/(2224)*a^(6) + (47663)/(4448)*a^(5) + (17559)/(556)*a^(4) - (144767)/(556)*a^(3) + (18173)/(139)*a^(2) + (32664)/(139)*a - (22732)/(139) , (473)/(4448)*a^(17) - (2183)/(4448)*a^(16) - (73)/(556)*a^(15) + (1355)/(556)*a^(14) - (329)/(278)*a^(13) - (2627)/(2224)*a^(12) - (2587)/(4448)*a^(11) - (4965)/(1112)*a^(10) + (24801)/(4448)*a^(9) - (125)/(4448)*a^(8) + (17791)/(1112)*a^(7) - (15093)/(2224)*a^(6) - (610)/(139)*a^(5) - (9829)/(1112)*a^(4) - (12352)/(139)*a^(3) + (60611)/(556)*a^(2) + (11933)/(139)*a - (13222)/(139) , (8795)/(4448)*a^(17) - (22067)/(4448)*a^(16) - (67875)/(8896)*a^(15) + (6253)/(278)*a^(14) - (2985)/(1112)*a^(13) - (26451)/(8896)*a^(12) + (37263)/(8896)*a^(11) - (479247)/(8896)*a^(10) + (216951)/(8896)*a^(9) - (102789)/(2224)*a^(8) + (656833)/(4448)*a^(7) - (9759)/(1112)*a^(6) + (136085)/(2224)*a^(5) + (62703)/(556)*a^(4) - (1165477)/(1112)*a^(3) + (152405)/(278)*a^(2) + (125041)/(139)*a - (88242)/(139) ], 1440262.77901, [[x^3 - 4*x - 1, 1], [x^9 - 3*x^8 - 7*x^7 + 21*x^6 + 17*x^5 - 42*x^4 - 21*x^3 + 22*x^2 + 14*x + 2, 1]]]