Normalized defining polynomial
\( x^{18} - 9 x^{16} - 22 x^{15} + 6 x^{14} + 135 x^{13} - 57 x^{12} - 447 x^{11} + 846 x^{10} + 2772 x^{9} + 75 x^{8} - 6834 x^{7} - 7971 x^{6} - 129 x^{5} + 4695 x^{4} + 1211 x^{3} - 1977 x^{2} - 1305 x - 227 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(125869072545329914529206272=2^{12}\cdot 3^{19}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2811366382392077525076670319} a^{17} + \frac{254683071172611657714223671}{2811366382392077525076670319} a^{16} - \frac{53158088983913388521300926}{122233320973568588046811753} a^{15} - \frac{624705048556219823773871576}{2811366382392077525076670319} a^{14} + \frac{233952035070457248264201799}{2811366382392077525076670319} a^{13} - \frac{447173781552187166794231818}{2811366382392077525076670319} a^{12} + \frac{6390134171470887070031879}{2811366382392077525076670319} a^{11} + \frac{961582421200372581421334112}{2811366382392077525076670319} a^{10} - \frac{861268718576414800585558329}{2811366382392077525076670319} a^{9} + \frac{241230450331083290850490403}{2811366382392077525076670319} a^{8} - \frac{794818443688630943377106595}{2811366382392077525076670319} a^{7} + \frac{1385431398540282855185145235}{2811366382392077525076670319} a^{6} - \frac{250589879621883003046501917}{2811366382392077525076670319} a^{5} + \frac{1056925493016760973822484749}{2811366382392077525076670319} a^{4} - \frac{524179878511590221255263080}{2811366382392077525076670319} a^{3} + \frac{834156404501347182086390650}{2811366382392077525076670319} a^{2} - \frac{752107495582483534454346686}{2811366382392077525076670319} a + \frac{69666869249628949614402678}{2811366382392077525076670319}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1837878.84692 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 864 |
| The 40 conjugacy class representatives for t18n228 |
| Character table for t18n228 is not computed |
Intermediate fields
| 3.1.31.1, 6.2.89373.1, 9.3.37528080192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.12.6 | $x^{12} + 24 x^{11} - 3 x^{10} + 81 x^{9} - 18 x^{8} + 54 x^{7} + 108 x^{5} - 54 x^{4} - 27 x^{3} - 81 x - 81$ | $3$ | $4$ | $12$ | 12T39 | $[3/2, 3/2]_{2}^{4}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.8.6.1 | $x^{8} - 7471 x^{4} + 19927296$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |