Properties

Label 18.6.12193888502...2128.1
Degree $18$
Signature $[6, 6]$
Discriminant $2^{12}\cdot 11^{8}\cdot 13^{3}\cdot 43^{6}$
Root discriminant $24.76$
Ramified primes $2, 11, 13, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times S_3\times S_4$ (as 18T111)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 15, -42, 119, -338, -258, 694, 93, -537, 115, 12, -45, 130, -37, -53, 33, 1, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 5*x^17 + x^16 + 33*x^15 - 53*x^14 - 37*x^13 + 130*x^12 - 45*x^11 + 12*x^10 + 115*x^9 - 537*x^8 + 93*x^7 + 694*x^6 - 258*x^5 - 338*x^4 + 119*x^3 - 42*x^2 + 15*x - 1)
 
gp: K = bnfinit(x^18 - 5*x^17 + x^16 + 33*x^15 - 53*x^14 - 37*x^13 + 130*x^12 - 45*x^11 + 12*x^10 + 115*x^9 - 537*x^8 + 93*x^7 + 694*x^6 - 258*x^5 - 338*x^4 + 119*x^3 - 42*x^2 + 15*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 5 x^{17} + x^{16} + 33 x^{15} - 53 x^{14} - 37 x^{13} + 130 x^{12} - 45 x^{11} + 12 x^{10} + 115 x^{9} - 537 x^{8} + 93 x^{7} + 694 x^{6} - 258 x^{5} - 338 x^{4} + 119 x^{3} - 42 x^{2} + 15 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12193888502348672234672128=2^{12}\cdot 11^{8}\cdot 13^{3}\cdot 43^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 13, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{11}{23} a^{14} + \frac{1}{23} a^{13} - \frac{8}{23} a^{12} + \frac{3}{23} a^{11} + \frac{11}{23} a^{10} - \frac{3}{23} a^{9} + \frac{3}{23} a^{8} + \frac{5}{23} a^{7} + \frac{4}{23} a^{6} + \frac{7}{23} a^{5} - \frac{9}{23} a^{4} + \frac{4}{23} a^{3} - \frac{3}{23} a^{2} + \frac{10}{23} a - \frac{2}{23}$, $\frac{1}{100119995136733770641} a^{17} - \frac{1832027233986324559}{100119995136733770641} a^{16} + \frac{5118160924048954304}{100119995136733770641} a^{15} - \frac{2039881888375756862}{100119995136733770641} a^{14} - \frac{35318632970939858900}{100119995136733770641} a^{13} + \frac{701235226943181458}{4353043266814511767} a^{12} - \frac{8339424705293025401}{100119995136733770641} a^{11} - \frac{1524846323917262275}{100119995136733770641} a^{10} - \frac{40166668836360513771}{100119995136733770641} a^{9} - \frac{6172455020054705737}{100119995136733770641} a^{8} + \frac{38249096747535596430}{100119995136733770641} a^{7} - \frac{23629865562291589326}{100119995136733770641} a^{6} + \frac{48902829873325100924}{100119995136733770641} a^{5} - \frac{41978226935236357911}{100119995136733770641} a^{4} + \frac{38218410424038192391}{100119995136733770641} a^{3} + \frac{8285752776853852606}{100119995136733770641} a^{2} + \frac{45498716675209278019}{100119995136733770641} a + \frac{28859227079862786983}{100119995136733770641}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 306764.536078 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_3\times S_4$ (as 18T111):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 288
The 30 conjugacy class representatives for $C_2\times S_3\times S_4$
Character table for $C_2\times S_3\times S_4$ is not computed

Intermediate fields

3.1.44.1, 3.3.473.1, 6.6.2908477.1, 9.3.74499967168.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ R R ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$43$$\Q_{43}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{43}$$x + 9$$1$$1$$0$Trivial$[\ ]$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$