Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 23 x^{15} + 6 x^{14} + 3 x^{13} + 19 x^{12} - 120 x^{11} + 702 x^{10} - 1128 x^{9} + 126 x^{8} - 120 x^{7} - 3302 x^{6} + 2775 x^{5} + 2427 x^{4} + 8128 x^{3} - 153 x^{2} - 4251 x + 53 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12178167588536804870357659257=3^{24}\cdot 73^{3}\cdot 577^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{9} a^{16} + \frac{1}{3} a^{11} + \frac{1}{9} a^{10} - \frac{1}{3} a^{8} + \frac{2}{9} a^{7} + \frac{2}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{3774229483728472231525296776719209} a^{17} - \frac{69098343444462851834123878105585}{3774229483728472231525296776719209} a^{16} - \frac{7813700672355341468454262855957}{419358831525385803502810752968801} a^{15} - \frac{55124816868139805740699637487547}{1258076494576157410508432258906403} a^{14} - \frac{12498459221741546958316665073755}{419358831525385803502810752968801} a^{13} - \frac{28385311647846994605845486492100}{419358831525385803502810752968801} a^{12} + \frac{5073781090167006271063225433263}{3774229483728472231525296776719209} a^{11} + \frac{732347445379479880972483157032940}{3774229483728472231525296776719209} a^{10} - \frac{191311760318106036948237162878880}{419358831525385803502810752968801} a^{9} - \frac{1132522982759008760371840792590715}{3774229483728472231525296776719209} a^{8} - \frac{64796643779231184677559412895555}{3774229483728472231525296776719209} a^{7} - \frac{61534850026435467433792508869973}{1258076494576157410508432258906403} a^{6} - \frac{1656784179100501143355439578783627}{3774229483728472231525296776719209} a^{5} + \frac{1762997430385388573965496403895165}{3774229483728472231525296776719209} a^{4} - \frac{122489778962271803264240682180203}{419358831525385803502810752968801} a^{3} + \frac{361394630502240459932234437884074}{3774229483728472231525296776719209} a^{2} - \frac{605835081131006722078328419580753}{3774229483728472231525296776719209} a + \frac{174579243599187267231234723905255}{1258076494576157410508432258906403}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9553128.96088 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $73$ | 73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.2.1 | $x^{4} + 1533 x^{2} + 644809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.6.0.1 | $x^{6} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 577 | Data not computed | ||||||