Normalized defining polynomial
\( x^{18} - 6 x^{17} + 30 x^{16} - 117 x^{15} + 309 x^{14} - 627 x^{13} + 930 x^{12} - 627 x^{11} - 510 x^{10} - 974 x^{9} + 6243 x^{8} - 2055 x^{7} - 11115 x^{6} + 10734 x^{5} - 696 x^{4} + 168 x^{3} - 1344 x^{2} - 192 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11360989554893559098699461641=3^{32}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{12} a^{4} + \frac{1}{3} a^{3} - \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{36} a^{14} + \frac{1}{36} a^{13} + \frac{1}{36} a^{12} + \frac{1}{18} a^{11} - \frac{1}{36} a^{10} + \frac{1}{18} a^{9} + \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{17}{36} a^{5} - \frac{5}{18} a^{4} - \frac{1}{36} a^{3} + \frac{5}{18} a^{2} - \frac{7}{18} a - \frac{2}{9}$, $\frac{1}{72} a^{15} + \frac{1}{72} a^{12} - \frac{1}{24} a^{11} + \frac{1}{24} a^{10} - \frac{1}{36} a^{9} + \frac{1}{8} a^{8} + \frac{5}{18} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{11}{72} a^{3} - \frac{1}{12} a^{2} - \frac{1}{6} a + \frac{4}{9}$, $\frac{1}{31392} a^{16} + \frac{65}{15696} a^{15} + \frac{181}{15696} a^{14} - \frac{93}{3488} a^{13} - \frac{289}{10464} a^{12} + \frac{2401}{31392} a^{11} - \frac{845}{15696} a^{10} + \frac{17}{31392} a^{9} - \frac{325}{5232} a^{8} - \frac{1505}{15696} a^{7} + \frac{11315}{31392} a^{6} + \frac{13777}{31392} a^{5} + \frac{4867}{10464} a^{4} - \frac{1589}{5232} a^{3} - \frac{61}{7848} a^{2} + \frac{559}{1962} a - \frac{455}{1962}$, $\frac{1}{108398747346848691451776} a^{17} - \frac{967386342095642}{94096134849695044663} a^{16} - \frac{147761256393466843777}{54199373673424345725888} a^{15} - \frac{307930675493450166529}{108398747346848691451776} a^{14} + \frac{1148241248941107467215}{108398747346848691451776} a^{13} - \frac{8019156166635475094425}{108398747346848691451776} a^{12} + \frac{249816720244754477227}{3011076315190241429216} a^{11} - \frac{7952329272019608862219}{108398747346848691451776} a^{10} + \frac{26978911784583877755}{376384539398780178652} a^{9} - \frac{10518356943565831124951}{54199373673424345725888} a^{8} + \frac{1297109966684372763461}{36132915782282897150592} a^{7} - \frac{37873886179164135246733}{108398747346848691451776} a^{6} + \frac{53010021600771331413319}{108398747346848691451776} a^{5} - \frac{3206995385909881925933}{13549843418356086431472} a^{4} + \frac{4218132370763044303919}{13549843418356086431472} a^{3} + \frac{1582605470131647433057}{4516614472785362143824} a^{2} - \frac{2403746966314023180851}{6774921709178043215736} a - \frac{446816550359665954817}{1129153618196340535956}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22453155.9774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6^2:C_3$ (as 18T48):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_6^2:C_3$ |
| Character table for $C_6^2:C_3$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.2.2368521.1, 9.9.5609891727441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.16.1 | $x^{9} + 3 x^{8} + 3 x^{6} + 3$ | $9$ | $1$ | $16$ | $C_3^2:C_3$ | $[2, 2]^{3}$ |
| 3.9.16.1 | $x^{9} + 3 x^{8} + 3 x^{6} + 3$ | $9$ | $1$ | $16$ | $C_3^2:C_3$ | $[2, 2]^{3}$ | |
| $19$ | 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.5.1 | $x^{6} - 304$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |