Normalized defining polynomial
\( x^{18} - 9 x^{17} + 33 x^{16} - 34 x^{15} - 258 x^{14} + 1455 x^{13} - 3982 x^{12} + 5931 x^{11} - 1518 x^{10} - 18927 x^{9} + 60993 x^{8} - 119193 x^{7} + 161951 x^{6} - 148209 x^{5} + 84738 x^{4} - 24970 x^{3} + 2862 x^{2} + 3366 x + 289 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112473925614060022797462679689=3^{24}\cdot 73^{5}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{73} a^{16} + \frac{35}{73} a^{15} - \frac{6}{73} a^{14} - \frac{10}{73} a^{13} + \frac{16}{73} a^{12} - \frac{9}{73} a^{11} - \frac{4}{73} a^{10} - \frac{36}{73} a^{9} + \frac{2}{73} a^{8} - \frac{28}{73} a^{7} + \frac{28}{73} a^{6} - \frac{19}{73} a^{5} + \frac{30}{73} a^{4} - \frac{15}{73} a^{3} - \frac{11}{73} a^{2} - \frac{17}{73} a - \frac{8}{73}$, $\frac{1}{426580905349178275192413142266669941261} a^{17} - \frac{2583246164054809440837878599058140645}{426580905349178275192413142266669941261} a^{16} + \frac{1239453488355589424277222628870847250}{426580905349178275192413142266669941261} a^{15} + \frac{2892583380560921677519347202792751598}{25092994432304604423083126015686467133} a^{14} + \frac{202266013055783063745617908213598706644}{426580905349178275192413142266669941261} a^{13} - \frac{136766461934331688443578700332621542386}{426580905349178275192413142266669941261} a^{12} - \frac{4515770522859971521521387243188316127}{426580905349178275192413142266669941261} a^{11} - \frac{128433174055194674789165367444547051859}{426580905349178275192413142266669941261} a^{10} + \frac{113102548549634603862078427601621737484}{426580905349178275192413142266669941261} a^{9} - \frac{56001531550141656374280894589489712397}{426580905349178275192413142266669941261} a^{8} + \frac{35239466384951152532975690302330499050}{426580905349178275192413142266669941261} a^{7} + \frac{15126437643916999502002017974140279440}{426580905349178275192413142266669941261} a^{6} - \frac{147225615291529834454903288875800969246}{426580905349178275192413142266669941261} a^{5} + \frac{191926744639923047722752050763989870640}{426580905349178275192413142266669941261} a^{4} + \frac{165244097413651033088583823386172089995}{426580905349178275192413142266669941261} a^{3} - \frac{28542877952490454695374591095119938791}{426580905349178275192413142266669941261} a^{2} + \frac{196058216639101667000002122746306866700}{426580905349178275192413142266669941261} a + \frac{10701530948572392675258667990496220802}{25092994432304604423083126015686467133}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10371943.796 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n401 |
| Character table for t18n401 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.2.276355881.1, 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||