Normalized defining polynomial
\( x^{18} - 9 x^{17} + 41 x^{16} - 124 x^{15} + 127 x^{14} + 567 x^{13} - 3300 x^{12} + 9439 x^{11} - 15912 x^{10} + 14033 x^{9} + 9268 x^{8} - 53945 x^{7} + 87694 x^{6} - 80727 x^{5} + 4269 x^{4} + 67494 x^{3} - 101997 x^{2} + 63081 x - 18729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1100368752620535476443233634482189=3^{22}\cdot 11^{8}\cdot 107^{6}\cdot 109\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 107, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{270} a^{12} - \frac{1}{45} a^{11} - \frac{8}{135} a^{10} - \frac{1}{135} a^{8} + \frac{77}{270} a^{7} + \frac{43}{90} a^{6} + \frac{22}{135} a^{5} + \frac{41}{270} a^{4} - \frac{121}{270} a^{3} + \frac{31}{90} a^{2} - \frac{7}{18} a - \frac{19}{45}$, $\frac{1}{270} a^{13} - \frac{7}{270} a^{11} - \frac{1}{45} a^{10} - \frac{1}{135} a^{9} + \frac{13}{54} a^{8} - \frac{13}{90} a^{7} + \frac{53}{270} a^{6} - \frac{1}{27} a^{5} + \frac{25}{54} a^{4} + \frac{22}{45} a^{3} + \frac{8}{45} a^{2} - \frac{23}{90} a - \frac{1}{30}$, $\frac{1}{540} a^{14} - \frac{1}{540} a^{13} - \frac{41}{540} a^{11} - \frac{1}{30} a^{10} - \frac{23}{540} a^{9} - \frac{7}{135} a^{8} + \frac{91}{540} a^{7} - \frac{1}{9} a^{6} + \frac{83}{540} a^{5} + \frac{17}{45} a^{4} - \frac{211}{540} a^{3} - \frac{1}{90} a^{2} + \frac{1}{4} a - \frac{83}{180}$, $\frac{1}{540} a^{15} - \frac{1}{540} a^{13} - \frac{1}{540} a^{12} - \frac{29}{540} a^{11} + \frac{13}{180} a^{10} + \frac{13}{180} a^{9} - \frac{107}{540} a^{8} + \frac{47}{180} a^{7} - \frac{127}{540} a^{6} - \frac{23}{540} a^{5} - \frac{167}{540} a^{4} - \frac{107}{540} a^{3} + \frac{23}{180} a^{2} + \frac{1}{90} a + \frac{17}{180}$, $\frac{1}{6328862640} a^{16} - \frac{1}{791107830} a^{15} + \frac{21979}{105481044} a^{14} - \frac{115388}{79110783} a^{13} - \frac{2791271}{2109620880} a^{12} + \frac{9458113}{351603480} a^{11} + \frac{101532869}{2109620880} a^{10} - \frac{6957793}{316443132} a^{9} + \frac{1266406753}{6328862640} a^{8} + \frac{65755447}{351603480} a^{7} + \frac{1286837557}{6328862640} a^{6} + \frac{1375389031}{3164431320} a^{5} + \frac{199514297}{2109620880} a^{4} + \frac{117609149}{1054810440} a^{3} - \frac{122654513}{527405220} a^{2} + \frac{79275757}{175801740} a - \frac{42710137}{140641392}$, $\frac{1}{7676910382320} a^{17} + \frac{299}{3838455191160} a^{16} + \frac{50266421}{95961379779} a^{15} + \frac{17169941}{21324751062} a^{14} - \frac{11099118457}{7676910382320} a^{13} - \frac{123415307}{159935632965} a^{12} + \frac{116445742739}{1535382076464} a^{11} + \frac{75369515039}{1279485063720} a^{10} - \frac{133641103481}{2558970127440} a^{9} - \frac{26341258153}{159935632965} a^{8} - \frac{503439647}{70430370480} a^{7} + \frac{145249787281}{319871265930} a^{6} - \frac{3396985078037}{7676910382320} a^{5} + \frac{24168901705}{383845519116} a^{4} + \frac{33349558511}{1919227595580} a^{3} - \frac{56364758944}{159935632965} a^{2} - \frac{767968763}{23476790160} a - \frac{52063906687}{1279485063720}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30757583718.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.12.8.2 | $x^{12} - 1331 x^{3} + 29282$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $107$ | 107.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 107.12.6.1 | $x^{12} + 14700516 x^{6} - 14025517307 x^{2} + 54026292666564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |