Properties

Label 18.6.10541034413...6057.1
Degree $18$
Signature $[6, 6]$
Discriminant $7^{12}\cdot 13^{5}\cdot 29^{5}$
Root discriminant $19.01$
Ramified primes $7, 13, 29$
Class number $1$
Class group Trivial
Galois group 18T839

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -6, 19, -28, -10, 117, -297, 458, -535, 458, -297, 117, -10, -28, 19, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 - 6*x^16 + 19*x^15 - 28*x^14 - 10*x^13 + 117*x^12 - 297*x^11 + 458*x^10 - 535*x^9 + 458*x^8 - 297*x^7 + 117*x^6 - 10*x^5 - 28*x^4 + 19*x^3 - 6*x^2 - x + 1)
 
gp: K = bnfinit(x^18 - x^17 - 6*x^16 + 19*x^15 - 28*x^14 - 10*x^13 + 117*x^12 - 297*x^11 + 458*x^10 - 535*x^9 + 458*x^8 - 297*x^7 + 117*x^6 - 10*x^5 - 28*x^4 + 19*x^3 - 6*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} - 6 x^{16} + 19 x^{15} - 28 x^{14} - 10 x^{13} + 117 x^{12} - 297 x^{11} + 458 x^{10} - 535 x^{9} + 458 x^{8} - 297 x^{7} + 117 x^{6} - 10 x^{5} - 28 x^{4} + 19 x^{3} - 6 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(105410344139098495736057=7^{12}\cdot 13^{5}\cdot 29^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{3}{13} a^{13} + \frac{3}{13} a^{12} - \frac{1}{13} a^{9} + \frac{6}{13} a^{8} + \frac{3}{13} a^{7} + \frac{6}{13} a^{6} - \frac{1}{13} a^{5} + \frac{3}{13} a^{2} + \frac{3}{13} a + \frac{1}{13}$, $\frac{1}{169} a^{15} + \frac{4}{169} a^{14} - \frac{59}{169} a^{13} - \frac{75}{169} a^{12} - \frac{3}{13} a^{11} + \frac{12}{169} a^{10} + \frac{18}{169} a^{9} - \frac{30}{169} a^{8} + \frac{9}{169} a^{7} - \frac{73}{169} a^{6} + \frac{25}{169} a^{5} - \frac{3}{13} a^{4} - \frac{36}{169} a^{3} - \frac{59}{169} a^{2} - \frac{22}{169} a - \frac{12}{169}$, $\frac{1}{169} a^{16} + \frac{3}{169} a^{14} + \frac{57}{169} a^{13} - \frac{12}{169} a^{12} - \frac{1}{169} a^{11} - \frac{30}{169} a^{10} - \frac{11}{169} a^{9} - \frac{79}{169} a^{8} - \frac{44}{169} a^{7} - \frac{60}{169} a^{6} - \frac{48}{169} a^{5} - \frac{49}{169} a^{4} - \frac{84}{169} a^{3} - \frac{59}{169} a^{2} - \frac{28}{169} a - \frac{43}{169}$, $\frac{1}{169} a^{17} + \frac{6}{169} a^{14} + \frac{48}{169} a^{13} - \frac{62}{169} a^{12} - \frac{82}{169} a^{11} - \frac{47}{169} a^{10} + \frac{75}{169} a^{9} - \frac{19}{169} a^{8} - \frac{35}{169} a^{7} - \frac{63}{169} a^{6} + \frac{84}{169} a^{5} + \frac{33}{169} a^{4} + \frac{49}{169} a^{3} + \frac{32}{169} a^{2} + \frac{75}{169} a - \frac{3}{169}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 34139.7681346 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T839:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 192 conjugacy class representatives for t18n839 are not computed
Character table for t18n839 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.5.16721334721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ $18$ $18$ R ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.3.4$x^{4} + 104$$4$$1$$3$$C_4$$[\ ]_{4}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.6.4.1$x^{6} + 232 x^{3} + 22707$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$