Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} + 7 x^{15} - 79 x^{14} + 151 x^{13} - 64 x^{12} - 230 x^{11} + 499 x^{10} - 357 x^{9} - 17 x^{8} + 499 x^{7} - 373 x^{6} + 445 x^{5} + 78 x^{4} - 12 x^{3} - 56 x^{2} + 15 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10522631208360387818170561=19^{16}\cdot 191^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{56} a^{12} - \frac{1}{14} a^{11} + \frac{13}{56} a^{10} + \frac{25}{56} a^{9} + \frac{9}{56} a^{8} - \frac{1}{2} a^{7} + \frac{25}{56} a^{6} - \frac{3}{8} a^{5} - \frac{9}{56} a^{3} + \frac{1}{56} a^{2} - \frac{19}{56} a + \frac{15}{56}$, $\frac{1}{112} a^{13} - \frac{1}{112} a^{12} + \frac{1}{112} a^{11} + \frac{1}{14} a^{10} - \frac{1}{4} a^{9} - \frac{1}{112} a^{8} + \frac{53}{112} a^{7} - \frac{1}{56} a^{6} - \frac{1}{16} a^{5} + \frac{47}{112} a^{4} - \frac{13}{56} a^{3} + \frac{5}{14} a^{2} + \frac{1}{8} a + \frac{45}{112}$, $\frac{1}{224} a^{14} + \frac{9}{224} a^{11} - \frac{5}{56} a^{10} + \frac{83}{224} a^{9} + \frac{13}{56} a^{8} + \frac{51}{224} a^{7} - \frac{9}{224} a^{6} + \frac{5}{28} a^{5} + \frac{3}{32} a^{4} - \frac{7}{16} a^{3} - \frac{29}{112} a^{2} - \frac{53}{224} a + \frac{45}{224}$, $\frac{1}{448} a^{15} - \frac{1}{448} a^{14} + \frac{1}{448} a^{12} + \frac{3}{448} a^{11} - \frac{1}{448} a^{10} - \frac{1}{64} a^{9} - \frac{73}{448} a^{8} - \frac{15}{112} a^{7} + \frac{73}{448} a^{6} + \frac{149}{448} a^{5} - \frac{17}{64} a^{4} + \frac{1}{4} a^{3} - \frac{3}{448} a^{2} + \frac{13}{224} a - \frac{165}{448}$, $\frac{1}{135296} a^{16} - \frac{17}{16912} a^{15} + \frac{3}{135296} a^{14} + \frac{193}{135296} a^{13} + \frac{71}{33824} a^{12} - \frac{349}{67648} a^{11} - \frac{287}{1208} a^{10} - \frac{15409}{33824} a^{9} + \frac{661}{19328} a^{8} - \frac{46175}{135296} a^{7} - \frac{6035}{67648} a^{6} - \frac{17125}{67648} a^{5} - \frac{62691}{135296} a^{4} - \frac{55659}{135296} a^{3} - \frac{40521}{135296} a^{2} - \frac{39591}{135296} a + \frac{13487}{135296}$, $\frac{1}{270592} a^{17} - \frac{1}{270592} a^{16} - \frac{237}{270592} a^{15} + \frac{299}{135296} a^{14} - \frac{237}{270592} a^{13} + \frac{97}{135296} a^{12} - \frac{6411}{135296} a^{11} + \frac{6561}{67648} a^{10} + \frac{4471}{270592} a^{9} - \frac{54441}{135296} a^{8} + \frac{29865}{270592} a^{7} + \frac{16539}{67648} a^{6} - \frac{27185}{270592} a^{5} + \frac{2865}{8456} a^{4} - \frac{26403}{135296} a^{3} + \frac{43369}{135296} a^{2} + \frac{51747}{135296} a + \frac{59481}{270592}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 274434.575676 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 16 conjugacy class representatives for t18n177 |
| Character table for t18n177 |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| $191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |