Normalized defining polynomial
\( x^{18} - 4 x^{17} + x^{16} + 12 x^{15} - 12 x^{14} - 178 x^{13} + 594 x^{12} + 41 x^{11} - 1729 x^{10} + 3483 x^{9} - 1963 x^{8} - 7590 x^{7} - 3207 x^{6} - 11241 x^{5} - 4265 x^{4} + 1351 x^{3} - 1743 x^{2} + 1933 x - 235 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10146939952861213092846003125=5^{5}\cdot 13^{16}\cdot 47^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{153530218268059919790837255011484437017} a^{17} - \frac{41151682205792661451564260027283419136}{153530218268059919790837255011484437017} a^{16} + \frac{61807986323099698401787579452109453290}{153530218268059919790837255011484437017} a^{15} - \frac{13106501725770685217356974354919914275}{153530218268059919790837255011484437017} a^{14} + \frac{41283703754961288929883325174263919738}{153530218268059919790837255011484437017} a^{13} + \frac{17159040910554482502061524960134300928}{153530218268059919790837255011484437017} a^{12} - \frac{49631711356348554061729584238229381557}{153530218268059919790837255011484437017} a^{11} - \frac{46342771000453225728768933403892164772}{153530218268059919790837255011484437017} a^{10} - \frac{3054870155716818384647547302936986950}{153530218268059919790837255011484437017} a^{9} - \frac{24645519903500090558268926489026745234}{153530218268059919790837255011484437017} a^{8} - \frac{62128683107986574622571234301998422123}{153530218268059919790837255011484437017} a^{7} + \frac{76386816431624733713202122483706414859}{153530218268059919790837255011484437017} a^{6} + \frac{30160064178338815264829931005450116062}{153530218268059919790837255011484437017} a^{5} + \frac{54665077313589536694705186508442120784}{153530218268059919790837255011484437017} a^{4} + \frac{62346342664594470402636460730649859913}{153530218268059919790837255011484437017} a^{3} - \frac{1492916198225983821938002410955301223}{153530218268059919790837255011484437017} a^{2} - \frac{52196982041070351479539713024671576349}{153530218268059919790837255011484437017} a + \frac{75380637097765668888337130719618736412}{153530218268059919790837255011484437017}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18446835.6771 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 56 conjugacy class representatives for t18n400 are not computed |
| Character table for t18n400 is not computed |
Intermediate fields
| 3.3.169.1, 6.2.142805.1, 9.9.45048729067225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | $18$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13 | Data not computed | ||||||
| 47 | Data not computed | ||||||