Normalized defining polynomial
\( x^{18} - 6 x^{17} + 28 x^{16} - 99 x^{15} + 171 x^{14} - 448 x^{13} - 196 x^{12} + 368 x^{11} - 3644 x^{10} + 7253 x^{9} - 5633 x^{8} + 10750 x^{7} + 1023 x^{6} + 3316 x^{5} - 3548 x^{4} - 2435 x^{3} + 858 x^{2} + 249 x - 71 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-893263861107131279261229596947=-\,7^{13}\cdot 83^{4}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{113} a^{16} + \frac{4}{113} a^{15} + \frac{3}{113} a^{14} + \frac{10}{113} a^{13} - \frac{37}{113} a^{12} + \frac{1}{113} a^{11} - \frac{41}{113} a^{10} + \frac{6}{113} a^{9} - \frac{15}{113} a^{8} + \frac{46}{113} a^{7} - \frac{17}{113} a^{6} + \frac{19}{113} a^{5} - \frac{55}{113} a^{4} - \frac{51}{113} a^{3} - \frac{31}{113} a^{2} + \frac{5}{113} a - \frac{15}{113}$, $\frac{1}{27820872989484925373512420486687273} a^{17} + \frac{57847972473350513989098882133373}{27820872989484925373512420486687273} a^{16} + \frac{4598853681890338533820422985006426}{27820872989484925373512420486687273} a^{15} + \frac{7935099221196991975443686546822425}{27820872989484925373512420486687273} a^{14} + \frac{5392774310230856228022630885374941}{27820872989484925373512420486687273} a^{13} + \frac{4084383280393183815467767550073163}{27820872989484925373512420486687273} a^{12} - \frac{10090380999690936021001410969831442}{27820872989484925373512420486687273} a^{11} - \frac{3256542951324445368601590513766574}{27820872989484925373512420486687273} a^{10} - \frac{11235835130626369921669916236998299}{27820872989484925373512420486687273} a^{9} - \frac{10404287540989093807904430276047356}{27820872989484925373512420486687273} a^{8} - \frac{11741978949088659381489408913727662}{27820872989484925373512420486687273} a^{7} + \frac{3805238739452282296848860955436273}{27820872989484925373512420486687273} a^{6} + \frac{5775726434198936127221375517983544}{27820872989484925373512420486687273} a^{5} - \frac{13329411565775440950589572689453385}{27820872989484925373512420486687273} a^{4} - \frac{2876987111399999242607375705389143}{27820872989484925373512420486687273} a^{3} - \frac{5465475658650701830381035962295388}{27820872989484925373512420486687273} a^{2} - \frac{3370919812533065751579743288284428}{27820872989484925373512420486687273} a + \frac{1657695817306495794933428430079459}{27820872989484925373512420486687273}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28987004.2919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 41472 |
| The 64 conjugacy class representatives for t18n705 are not computed |
| Character table for t18n705 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 83.6.4.1 | $x^{6} + 415 x^{3} + 55112$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 181 | Data not computed | ||||||