Normalized defining polynomial
\( x^{18} - 9 x^{17} + 9 x^{16} + 87 x^{15} - 81 x^{14} - 972 x^{13} + 4071 x^{12} - 8820 x^{11} + 12267 x^{10} - 26013 x^{9} + 32706 x^{8} + 70866 x^{7} - 35265 x^{6} - 428886 x^{5} + 484812 x^{4} - 141066 x^{3} + 456012 x^{2} - 473040 x + 18678 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-80056925371194976443882772152188928=-\,2^{18}\cdot 3^{37}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{271477344302901338647556830403634266991643672504733} a^{17} + \frac{38031015621771802946013496761124796583314281319094}{271477344302901338647556830403634266991643672504733} a^{16} - \frac{126489587197125600083963830702271173402376992726620}{271477344302901338647556830403634266991643672504733} a^{15} - \frac{52014529201550455746076965061551236972691167795730}{271477344302901338647556830403634266991643672504733} a^{14} - \frac{19315054571028191330745822873753062853911667089751}{38782477757557334092508118629090609570234810357819} a^{13} - \frac{18608204837602012041506304236543054781977310908991}{271477344302901338647556830403634266991643672504733} a^{12} - \frac{126127206552323118378142680490968443683051098306939}{271477344302901338647556830403634266991643672504733} a^{11} - \frac{126873034174064783412328925232264997471700076488882}{271477344302901338647556830403634266991643672504733} a^{10} + \frac{123532373213474865632539056055255065780140024856339}{271477344302901338647556830403634266991643672504733} a^{9} - \frac{12690450685623697414082379483688713038898091089495}{38782477757557334092508118629090609570234810357819} a^{8} - \frac{125709040035434207029021486717178864969047957647174}{271477344302901338647556830403634266991643672504733} a^{7} + \frac{4272645061009828208344257689785631562877428277927}{38782477757557334092508118629090609570234810357819} a^{6} + \frac{125071190167793219477164860357741747294771561174730}{271477344302901338647556830403634266991643672504733} a^{5} - \frac{8719327121149858940599924116260824099539183709953}{271477344302901338647556830403634266991643672504733} a^{4} - \frac{72176138793203444335128703509573287413141352928529}{271477344302901338647556830403634266991643672504733} a^{3} + \frac{134849832219348554698385975124638458343795038546052}{271477344302901338647556830403634266991643672504733} a^{2} - \frac{108390086513796571625418266717142461648353618452223}{271477344302901338647556830403634266991643672504733} a - \frac{85789997661570272100941426807147267842222128316982}{271477344302901338647556830403634266991643672504733}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29354525085.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.1 | $x^{6} + 2 x^{5} + 2 x^{4} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.12.11.3 | $x^{12} + 224$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $[\ ]_{12}^{2}$ | |