Normalized defining polynomial
\( x^{18} - 4 x^{17} + 26 x^{15} - 285 x^{14} + 949 x^{13} - 2569 x^{12} + 3432 x^{11} + 3197 x^{10} - 40794 x^{9} + 157050 x^{8} - 431269 x^{7} + 931848 x^{6} - 1614434 x^{5} + 2341399 x^{4} - 2607975 x^{3} + 2270524 x^{2} - 1269256 x + 307943 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-757543287754796256482850550567=-\,7^{13}\cdot 52879^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 52879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{181399042953870335814897318793513907243774149061987} a^{17} + \frac{87033365705388788621407271027492989096236664626254}{181399042953870335814897318793513907243774149061987} a^{16} + \frac{33876693532965496019494804284014494366523894926881}{181399042953870335814897318793513907243774149061987} a^{15} + \frac{48471473917612868201172269449345192538575152187710}{181399042953870335814897318793513907243774149061987} a^{14} - \frac{33624514577127541975783346507092649685815446859713}{181399042953870335814897318793513907243774149061987} a^{13} + \frac{4051987505279802221401070572617698284038476912742}{181399042953870335814897318793513907243774149061987} a^{12} - \frac{37712185458723314165951315922036914694289544655310}{181399042953870335814897318793513907243774149061987} a^{11} - \frac{20723856632070403498883715617004971997236924521476}{181399042953870335814897318793513907243774149061987} a^{10} + \frac{46558310478919113994599699656911288858971369370331}{181399042953870335814897318793513907243774149061987} a^{9} + \frac{32231810588240315543454331690039372349891651757205}{181399042953870335814897318793513907243774149061987} a^{8} + \frac{72836982381766097917907591200632612640153617233425}{181399042953870335814897318793513907243774149061987} a^{7} + \frac{17442310771587170638368225432109084044790481348555}{181399042953870335814897318793513907243774149061987} a^{6} + \frac{63822160018181291995557403015286425137285606298383}{181399042953870335814897318793513907243774149061987} a^{5} - \frac{48501040767030683925346537497176943319755643060881}{181399042953870335814897318793513907243774149061987} a^{4} + \frac{88830167655563356013420898816650249126844220189404}{181399042953870335814897318793513907243774149061987} a^{3} + \frac{26215808351479603961212934275434211512639801959530}{181399042953870335814897318793513907243774149061987} a^{2} + \frac{29963037102467843406326966214781567895585640946248}{181399042953870335814897318793513907243774149061987} a - \frac{20654045093385861703798287339841893048127554325723}{181399042953870335814897318793513907243774149061987}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49924075.6539 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.7.6221161471.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 52879 | Data not computed | ||||||