Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} - 34 x^{14} + 44 x^{13} - 62 x^{12} + 164 x^{11} + 72 x^{10} - 702 x^{9} + 228 x^{8} + 1192 x^{7} - 70 x^{6} - 1976 x^{5} - 336 x^{4} + 1484 x^{3} - 344 x^{2} - 1940 x - 914 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-73395976223377690632126464=-\,2^{26}\cdot 101^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{80644321509309562222130400401} a^{17} + \frac{9903181638577557644573747805}{80644321509309562222130400401} a^{16} - \frac{38838232623772931550027642}{80644321509309562222130400401} a^{15} - \frac{21150480812872875948780389851}{80644321509309562222130400401} a^{14} + \frac{37452486321059795056020781818}{80644321509309562222130400401} a^{13} - \frac{2545499676565312052584407683}{80644321509309562222130400401} a^{12} + \frac{978514997937247067053978893}{2780838672734812490418289669} a^{11} - \frac{22995522275405213027333675001}{80644321509309562222130400401} a^{10} - \frac{38568889361195830875828583054}{80644321509309562222130400401} a^{9} + \frac{35070419206320258170422488717}{80644321509309562222130400401} a^{8} + \frac{30499967731981273583008385115}{80644321509309562222130400401} a^{7} - \frac{22382063626315945446413282067}{80644321509309562222130400401} a^{6} - \frac{18954777087488790931858886784}{80644321509309562222130400401} a^{5} + \frac{3792525959874927691372133703}{80644321509309562222130400401} a^{4} - \frac{1321081218235560958120452245}{2780838672734812490418289669} a^{3} + \frac{18192758176347129483446847484}{80644321509309562222130400401} a^{2} - \frac{208832189546699325108010803}{2780838672734812490418289669} a - \frac{7955023940827901283842463581}{80644321509309562222130400401}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 792743.902345 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 28 conjugacy class representatives for t18n301 |
| Character table for t18n301 is not computed |
Intermediate fields
| 3.3.404.1, 6.4.263757056.1, 9.5.26639462656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $101$ | 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |