Normalized defining polynomial
\( x^{18} - 9 x^{17} + 55 x^{16} - 236 x^{15} + 774 x^{14} - 2002 x^{13} + 4095 x^{12} - 6630 x^{11} + 8176 x^{10} - 6989 x^{9} + 2401 x^{8} + 3834 x^{7} - 8454 x^{6} + 9227 x^{5} - 6692 x^{4} + 3329 x^{3} - 1060 x^{2} + 180 x - 10 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7300231075154746127941120000=-\,2^{12}\cdot 5^{4}\cdot 37^{8}\cdot 59^{4}\cdot 67\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{14} a^{14} - \frac{1}{2} a^{13} - \frac{1}{14} a^{12} - \frac{1}{14} a^{11} - \frac{3}{7} a^{9} + \frac{5}{14} a^{8} - \frac{3}{14} a^{7} + \frac{2}{7} a^{5} + \frac{1}{14} a^{4} - \frac{1}{14} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{14} a^{15} + \frac{3}{7} a^{13} + \frac{3}{7} a^{12} - \frac{1}{2} a^{11} - \frac{3}{7} a^{10} + \frac{5}{14} a^{9} + \frac{2}{7} a^{8} - \frac{1}{2} a^{7} + \frac{2}{7} a^{6} + \frac{1}{14} a^{5} + \frac{3}{7} a^{4} + \frac{3}{14} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{1068886} a^{16} - \frac{4}{534443} a^{15} + \frac{2837}{1068886} a^{14} - \frac{2817}{152698} a^{13} - \frac{60180}{534443} a^{12} - \frac{90743}{1068886} a^{11} + \frac{273599}{1068886} a^{10} - \frac{57231}{534443} a^{9} + \frac{25160}{534443} a^{8} + \frac{22405}{82222} a^{7} + \frac{127957}{1068886} a^{6} - \frac{63331}{534443} a^{5} - \frac{10215}{76349} a^{4} + \frac{280503}{1068886} a^{3} + \frac{252416}{534443} a^{2} + \frac{76268}{534443} a - \frac{79496}{534443}$, $\frac{1}{39548782} a^{17} + \frac{5}{19774391} a^{16} + \frac{918881}{39548782} a^{15} - \frac{1190237}{39548782} a^{14} + \frac{7855343}{19774391} a^{13} + \frac{11943691}{39548782} a^{12} + \frac{9481783}{39548782} a^{11} - \frac{5687834}{19774391} a^{10} + \frac{7622439}{19774391} a^{9} - \frac{9797231}{39548782} a^{8} + \frac{13311023}{39548782} a^{7} - \frac{515332}{1521107} a^{6} - \frac{8006524}{19774391} a^{5} + \frac{8395183}{39548782} a^{4} - \frac{661466}{1521107} a^{3} + \frac{166128}{534443} a^{2} + \frac{7706644}{19774391} a - \frac{4255841}{19774391}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37305422.2595 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $59$ | 59.6.4.1 | $x^{6} + 295 x^{3} + 27848$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 59.12.0.1 | $x^{12} - x + 10$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 67 | Data not computed | ||||||