Properties

Label 18.4.58516890664...8403.1
Degree $18$
Signature $[4, 7]$
Discriminant $-\,7^{12}\cdot 83^{5}\cdot 181^{4}$
Root discriminant $39.64$
Ramified primes $7, 83, 181$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group 18T839

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![71, 39, -15, -370, 197, 146, 295, -621, 396, 280, -698, 227, 191, 5, -164, 74, 2, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 + 2*x^16 + 74*x^15 - 164*x^14 + 5*x^13 + 191*x^12 + 227*x^11 - 698*x^10 + 280*x^9 + 396*x^8 - 621*x^7 + 295*x^6 + 146*x^5 + 197*x^4 - 370*x^3 - 15*x^2 + 39*x + 71)
 
gp: K = bnfinit(x^18 - 7*x^17 + 2*x^16 + 74*x^15 - 164*x^14 + 5*x^13 + 191*x^12 + 227*x^11 - 698*x^10 + 280*x^9 + 396*x^8 - 621*x^7 + 295*x^6 + 146*x^5 + 197*x^4 - 370*x^3 - 15*x^2 + 39*x + 71, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} + 2 x^{16} + 74 x^{15} - 164 x^{14} + 5 x^{13} + 191 x^{12} + 227 x^{11} - 698 x^{10} + 280 x^{9} + 396 x^{8} - 621 x^{7} + 295 x^{6} + 146 x^{5} + 197 x^{4} - 370 x^{3} - 15 x^{2} + 39 x + 71 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-58516890664476634710877708403=-\,7^{12}\cdot 83^{5}\cdot 181^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 83, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3463741753787405189025563} a^{17} - \frac{1062922468338776633512042}{3463741753787405189025563} a^{16} + \frac{1562304806659099432715964}{3463741753787405189025563} a^{15} + \frac{39830451602190637611492}{494820250541057884146509} a^{14} + \frac{791826697316412256554633}{3463741753787405189025563} a^{13} + \frac{57049551770027205279529}{3463741753787405189025563} a^{12} + \frac{1126908101925253439205747}{3463741753787405189025563} a^{11} + \frac{16644534027594702264351}{494820250541057884146509} a^{10} - \frac{192832931250961229548031}{3463741753787405189025563} a^{9} - \frac{163871089723962426223640}{3463741753787405189025563} a^{8} + \frac{12212650504760354326049}{266441673368261937617351} a^{7} - \frac{1473686419192060203339362}{3463741753787405189025563} a^{6} + \frac{549338688414774464173592}{3463741753787405189025563} a^{5} + \frac{213868176801913016824645}{3463741753787405189025563} a^{4} - \frac{1145751746371815038950646}{3463741753787405189025563} a^{3} + \frac{1002947233397316822222730}{3463741753787405189025563} a^{2} + \frac{1064516802341970313761973}{3463741753787405189025563} a + \frac{1341695803964103690446616}{3463741753787405189025563}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5745591.93733 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T839:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 192 conjugacy class representatives for t18n839 are not computed
Character table for t18n839 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.26552265046321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ R ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$83$$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.4.0.1$x^{4} - x + 22$$1$$4$$0$$C_4$$[\ ]^{4}$
83.6.5.2$x^{6} + 249$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.4.2.1$x^{4} + 6335 x^{2} + 10614564$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$