Normalized defining polynomial
\( x^{18} - 2 x^{17} - 7 x^{16} + 20 x^{15} - 110 x^{13} + 184 x^{12} + 164 x^{11} - 972 x^{10} + 1676 x^{9} - 1184 x^{8} - 248 x^{7} + 1570 x^{6} - 1598 x^{5} + 942 x^{4} - 292 x^{3} + 75 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5484891214174855928741888=-\,2^{26}\cdot 37^{6}\cdot 317^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 317$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{115} a^{15} - \frac{2}{23} a^{14} - \frac{18}{115} a^{13} + \frac{49}{115} a^{12} + \frac{42}{115} a^{11} - \frac{5}{23} a^{10} + \frac{19}{115} a^{9} + \frac{16}{115} a^{8} + \frac{3}{115} a^{7} + \frac{41}{115} a^{6} + \frac{54}{115} a^{5} + \frac{7}{23} a^{4} + \frac{29}{115} a^{3} + \frac{56}{115} a^{2} - \frac{1}{115} a - \frac{6}{23}$, $\frac{1}{1955} a^{16} - \frac{4}{1955} a^{15} + \frac{35}{391} a^{14} + \frac{861}{1955} a^{13} - \frac{308}{1955} a^{12} - \frac{946}{1955} a^{11} - \frac{178}{391} a^{10} - \frac{181}{391} a^{9} - \frac{614}{1955} a^{8} + \frac{542}{1955} a^{7} - \frac{321}{1955} a^{6} + \frac{267}{1955} a^{5} - \frac{129}{1955} a^{4} - \frac{33}{1955} a^{2} - \frac{243}{1955} a - \frac{778}{1955}$, $\frac{1}{12816723334569925} a^{17} - \frac{2955974183189}{12816723334569925} a^{16} + \frac{21460946055471}{12816723334569925} a^{15} - \frac{678559152352227}{12816723334569925} a^{14} - \frac{4795253496986911}{12816723334569925} a^{13} + \frac{6393155514801697}{12816723334569925} a^{12} - \frac{27640077986414}{512668933382797} a^{11} - \frac{239171048033246}{12816723334569925} a^{10} - \frac{1021978587961683}{2563344666913985} a^{9} + \frac{3074863535768036}{12816723334569925} a^{8} - \frac{4791137839606026}{12816723334569925} a^{7} + \frac{4982254460179534}{12816723334569925} a^{6} - \frac{44503485258846}{557248840633475} a^{5} + \frac{233210084165639}{753924902033525} a^{4} + \frac{2715898338832731}{12816723334569925} a^{3} - \frac{1396906472052459}{12816723334569925} a^{2} - \frac{2367950609601292}{12816723334569925} a + \frac{253018687754064}{753924902033525}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243952.717588 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n394 |
| Character table for t18n394 is not computed |
Intermediate fields
| 3.3.148.1, 6.4.111097088.4, 9.5.4110592256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 317 | Data not computed | ||||||