Normalized defining polynomial
\( x^{18} - x^{17} - 18 x^{16} - 5 x^{15} + 159 x^{14} + 82 x^{13} - 777 x^{12} - 517 x^{11} + 1884 x^{10} + 793 x^{9} - 3070 x^{8} - 246 x^{7} + 2754 x^{6} - 765 x^{5} - 925 x^{4} + 689 x^{3} + 19 x^{2} - 3 x - 4 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4264992554526526375755352351=-\,31\cdot 37^{4}\cdot 151^{4}\cdot 613^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 37, 151, 613$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} - \frac{5}{13} a^{15} - \frac{2}{13} a^{14} - \frac{3}{13} a^{13} - \frac{3}{13} a^{12} + \frac{2}{13} a^{11} - \frac{6}{13} a^{10} + \frac{6}{13} a^{9} - \frac{1}{13} a^{8} + \frac{6}{13} a^{7} + \frac{4}{13} a^{6} - \frac{5}{13} a^{4} - \frac{4}{13} a^{3} - \frac{5}{13} a^{2} - \frac{3}{13} a - \frac{1}{13}$, $\frac{1}{156966403264775715372303425} a^{17} + \frac{182916835954699387648837}{31393280652955143074460685} a^{16} - \frac{11427418978514056680980908}{156966403264775715372303425} a^{15} + \frac{27539751436875498755700707}{156966403264775715372303425} a^{14} - \frac{16628090129385044326520864}{156966403264775715372303425} a^{13} - \frac{29551531706376099029999497}{156966403264775715372303425} a^{12} + \frac{42618309655604650588252331}{156966403264775715372303425} a^{11} + \frac{14834167235592129473081599}{156966403264775715372303425} a^{10} + \frac{42260446674091194311812073}{156966403264775715372303425} a^{9} + \frac{15181071088167320728913096}{156966403264775715372303425} a^{8} - \frac{46602672078431627694010264}{156966403264775715372303425} a^{7} + \frac{1364369370096793936183209}{6278656130591028614892137} a^{6} + \frac{66050606171104680462400604}{156966403264775715372303425} a^{5} + \frac{12121486461445024497860129}{156966403264775715372303425} a^{4} - \frac{250896681541921751070512}{12074338712675055028638725} a^{3} - \frac{5138662398382437734438554}{12074338712675055028638725} a^{2} + \frac{42389881122612711643718197}{156966403264775715372303425} a - \frac{46217780768252163699803436}{156966403264775715372303425}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12356456.4944 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 92897280 |
| The 168 conjugacy class representatives for t18n966 are not computed |
| Character table for t18n966 is not computed |
Intermediate fields
| 9.9.11729467378561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $151$ | 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 613 | Data not computed | ||||||