Normalized defining polynomial
\( x^{18} + 15 x^{16} - 2 x^{15} - 54 x^{14} + 240 x^{13} - 1326 x^{12} + 1836 x^{11} - 3612 x^{10} + 876 x^{9} - 1431 x^{8} - 2298 x^{7} - 3535 x^{6} + 8928 x^{5} - 13620 x^{4} + 21989 x^{3} - 16191 x^{2} + 12846 x - 6731 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41599945090131789253856059611=-\,3^{27}\cdot 73^{4}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{127473410483478202985376023516086076815009} a^{17} - \frac{33971199183137538274969424419286535550962}{127473410483478202985376023516086076815009} a^{16} - \frac{10575194463389435485064811552656832269104}{127473410483478202985376023516086076815009} a^{15} - \frac{56830196974741934443798926040709234938458}{127473410483478202985376023516086076815009} a^{14} + \frac{22192908796499400079426272241104545436479}{127473410483478202985376023516086076815009} a^{13} - \frac{31654932359684304192852013537676611061526}{127473410483478202985376023516086076815009} a^{12} + \frac{27642545857370836494983145091903516851405}{127473410483478202985376023516086076815009} a^{11} + \frac{6495425716438985476817432841526221490039}{127473410483478202985376023516086076815009} a^{10} + \frac{35378714297544785229772687377768969688023}{127473410483478202985376023516086076815009} a^{9} - \frac{7712459484694843642749291937819543270958}{127473410483478202985376023516086076815009} a^{8} + \frac{5592382056781750089665911698789876933467}{127473410483478202985376023516086076815009} a^{7} - \frac{45024144040812852629888568055325861589085}{127473410483478202985376023516086076815009} a^{6} - \frac{44246812236923445206525953567599062638089}{127473410483478202985376023516086076815009} a^{5} + \frac{35987519967990797674214414207007369485252}{127473410483478202985376023516086076815009} a^{4} - \frac{3135243519206366298998365808793316671250}{127473410483478202985376023516086076815009} a^{3} - \frac{31534543819454845271653369788811868451362}{127473410483478202985376023516086076815009} a^{2} + \frac{9856002733275416585104901451711176463828}{127473410483478202985376023516086076815009} a + \frac{52356031392981872604680727638411765587539}{127473410483478202985376023516086076815009}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3339413.71798 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||