Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 84 x^{15} + 111 x^{14} - 21 x^{13} - 212 x^{12} + 375 x^{11} - 187 x^{10} - 286 x^{9} + 399 x^{8} + 345 x^{7} - 1167 x^{6} + 1080 x^{5} - 201 x^{4} - 440 x^{3} + 126 x^{2} + 134 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3987700862576146359609375=-\,3^{11}\cdot 5^{7}\cdot 257^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{4}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} - \frac{1}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{135} a^{14} - \frac{7}{135} a^{13} - \frac{2}{135} a^{12} + \frac{13}{135} a^{11} - \frac{7}{135} a^{10} - \frac{41}{135} a^{9} + \frac{11}{27} a^{8} - \frac{8}{27} a^{7} - \frac{2}{15} a^{6} + \frac{8}{45} a^{5} + \frac{1}{15} a^{4} + \frac{28}{135} a^{3} + \frac{53}{135} a^{2} - \frac{23}{135} a - \frac{29}{135}$, $\frac{1}{2835} a^{15} + \frac{1}{945} a^{14} - \frac{13}{315} a^{13} - \frac{97}{2835} a^{12} - \frac{94}{945} a^{11} - \frac{1}{135} a^{10} + \frac{100}{567} a^{9} + \frac{16}{189} a^{8} - \frac{1003}{2835} a^{7} - \frac{82}{945} a^{6} - \frac{262}{945} a^{5} - \frac{557}{2835} a^{4} - \frac{43}{315} a^{3} + \frac{274}{945} a^{2} + \frac{1271}{2835} a + \frac{5}{567}$, $\frac{1}{1998675} a^{16} - \frac{8}{1998675} a^{15} - \frac{1772}{666225} a^{14} + \frac{5336}{285525} a^{13} + \frac{20567}{1998675} a^{12} + \frac{18961}{666225} a^{11} + \frac{295823}{1998675} a^{10} + \frac{334121}{1998675} a^{9} + \frac{185672}{1998675} a^{8} - \frac{140659}{285525} a^{7} - \frac{106019}{666225} a^{6} - \frac{122593}{399735} a^{5} - \frac{65357}{285525} a^{4} + \frac{22147}{666225} a^{3} + \frac{561371}{1998675} a^{2} - \frac{170741}{666225} a - \frac{689621}{1998675}$, $\frac{1}{5996025} a^{17} - \frac{1}{5996025} a^{16} + \frac{139}{856575} a^{15} + \frac{767}{239841} a^{14} - \frac{2312}{856575} a^{13} + \frac{29537}{5996025} a^{12} + \frac{903389}{5996025} a^{11} + \frac{50887}{5996025} a^{10} + \frac{811369}{5996025} a^{9} + \frac{1837891}{5996025} a^{8} + \frac{2859167}{5996025} a^{7} - \frac{55822}{127575} a^{6} + \frac{1812476}{5996025} a^{5} - \frac{1562492}{5996025} a^{4} + \frac{17924}{856575} a^{3} + \frac{194114}{5996025} a^{2} + \frac{1790638}{5996025} a - \frac{227222}{5996025}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119404.116734 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.257.1, 9.5.34373550825.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.6.9.4 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 257 | Data not computed | ||||||