Properties

Label 18.4.38268596395...2896.1
Degree $18$
Signature $[4, 7]$
Discriminant $-\,2^{6}\cdot 3^{32}\cdot 19^{9}$
Root discriminant $38.72$
Ramified primes $2, 3, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T585

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-39736, 125604, -131538, 85779, -44430, 3096, 29664, -25989, 5901, 4141, -3171, 360, 414, -147, -60, 42, 3, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 3*x^16 + 42*x^15 - 60*x^14 - 147*x^13 + 414*x^12 + 360*x^11 - 3171*x^10 + 4141*x^9 + 5901*x^8 - 25989*x^7 + 29664*x^6 + 3096*x^5 - 44430*x^4 + 85779*x^3 - 131538*x^2 + 125604*x - 39736)
 
gp: K = bnfinit(x^18 - 6*x^17 + 3*x^16 + 42*x^15 - 60*x^14 - 147*x^13 + 414*x^12 + 360*x^11 - 3171*x^10 + 4141*x^9 + 5901*x^8 - 25989*x^7 + 29664*x^6 + 3096*x^5 - 44430*x^4 + 85779*x^3 - 131538*x^2 + 125604*x - 39736, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 3 x^{16} + 42 x^{15} - 60 x^{14} - 147 x^{13} + 414 x^{12} + 360 x^{11} - 3171 x^{10} + 4141 x^{9} + 5901 x^{8} - 25989 x^{7} + 29664 x^{6} + 3096 x^{5} - 44430 x^{4} + 85779 x^{3} - 131538 x^{2} + 125604 x - 39736 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-38268596395430935911408712896=-\,2^{6}\cdot 3^{32}\cdot 19^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{50655353979685418759003844214349999936} a^{17} + \frac{105224634995128354251984626989174367}{12663838494921354689750961053587499984} a^{16} + \frac{1511325505379819397102291917948670011}{50655353979685418759003844214349999936} a^{15} - \frac{145041543682117902146342370940166541}{1582979811865169336218870131698437498} a^{14} - \frac{1171427123777907905451398548940154463}{12663838494921354689750961053587499984} a^{13} + \frac{9797042286344638248097230273582080597}{50655353979685418759003844214349999936} a^{12} - \frac{2672445360117345626841229273681070031}{6331919247460677344875480526793749992} a^{11} + \frac{754137127105255661067975193298869275}{6331919247460677344875480526793749992} a^{10} + \frac{21594967269720809284252643799034880461}{50655353979685418759003844214349999936} a^{9} + \frac{10434932224433386294483703480461714663}{50655353979685418759003844214349999936} a^{8} - \frac{25278698245805691245674522242432577669}{50655353979685418759003844214349999936} a^{7} + \frac{13264397305613185230120365288480638481}{50655353979685418759003844214349999936} a^{6} + \frac{2849493259839201746238780766730344449}{25327676989842709379501922107174999968} a^{5} - \frac{2764661052314344285258776780870320649}{12663838494921354689750961053587499984} a^{4} + \frac{9441058032570411273587279214785371317}{25327676989842709379501922107174999968} a^{3} - \frac{7938588012975667645369800789600917017}{50655353979685418759003844214349999936} a^{2} + \frac{156473764207798830374615725779181271}{12663838494921354689750961053587499984} a - \frac{5822631685436386448301445449671779129}{12663838494921354689750961053587499984}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 25189782.0975 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T585:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 13824
The 96 conjugacy class representatives for t18n585 are not computed
Character table for t18n585 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.5609891727441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.1$x^{6} + x^{2} - 1$$2$$3$$6$$A_4$$[2, 2]^{3}$
2.6.0.1$x^{6} - x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
3Data not computed
$19$19.3.2.3$x^{3} - 304$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.3$x^{3} - 304$$3$$1$$2$$C_3$$[\ ]_{3}$
19.6.0.1$x^{6} - x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
19.6.5.3$x^{6} - 4864$$6$$1$$5$$C_6$$[\ ]_{6}$