Normalized defining polynomial
\( x^{18} - 3 x^{17} - 21 x^{16} + 152 x^{15} - 390 x^{14} + 168 x^{13} + 2299 x^{12} - 9525 x^{11} + 22074 x^{10} - 35907 x^{9} + 43209 x^{8} - 38994 x^{7} + 27744 x^{6} - 17532 x^{5} + 10716 x^{4} - 5052 x^{3} - 1470 x^{2} + 5580 x - 3288 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3768818155514550517312159137792=-\,2^{14}\cdot 3^{23}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{15} a^{15} - \frac{2}{5} a^{14} + \frac{1}{15} a^{12} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{30} a^{16} - \frac{1}{30} a^{15} - \frac{1}{2} a^{14} - \frac{7}{15} a^{13} - \frac{1}{3} a^{12} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} + \frac{3}{10} a^{9} - \frac{2}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{705381437740708107065373728220} a^{17} + \frac{9049925168598848958733061417}{705381437740708107065373728220} a^{16} - \frac{14203266401547664022210092049}{705381437740708107065373728220} a^{15} - \frac{40567403783269924268241109352}{176345359435177026766343432055} a^{14} - \frac{96253800256155923284281255491}{352690718870354053532686864110} a^{13} - \frac{14174228739674044133967263767}{35269071887035405353268686411} a^{12} - \frac{90282918888852572804048452483}{235127145913569369021791242740} a^{11} - \frac{36119487049052346014163921617}{78375715304523123007263747580} a^{10} + \frac{15422987426845995818464167847}{117563572956784684510895621370} a^{9} + \frac{44912367727003746715699913459}{235127145913569369021791242740} a^{8} - \frac{50810510640461835940845557549}{235127145913569369021791242740} a^{7} - \frac{6127533203781872759278999433}{39187857652261561503631873790} a^{6} + \frac{13364931993179863040868149489}{58781786478392342255447810685} a^{5} + \frac{8975631357319185701065118752}{58781786478392342255447810685} a^{4} - \frac{5409548142874536629114038855}{11756357295678468451089562137} a^{3} - \frac{1482245201457499984118671532}{58781786478392342255447810685} a^{2} - \frac{46870375587287652799202663917}{117563572956784684510895621370} a - \frac{24695021589755925675380823412}{58781786478392342255447810685}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 647202839.847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n769 are not computed |
| Character table for t18n769 is not computed |
Intermediate fields
| 3.3.1101.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
| $3$ | 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.12.13.4 | $x^{12} - 3 x^{10} + 3 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T36 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||