\\ Pari/GP code for working with number field 18.4.328810524890493731499656799939.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 9*y^17 + 36*y^16 - 81*y^15 + 663*y^13 - 2804*y^12 + 6810*y^11 - 9780*y^10 + 2806*y^9 + 26325*y^8 - 82590*y^7 + 133855*y^6 - 118608*y^5 - 10557*y^4 + 162203*y^3 - 207960*y^2 - 124860*y + 447697, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^17 + 36*x^16 - 81*x^15 + 663*x^13 - 2804*x^12 + 6810*x^11 - 9780*x^10 + 2806*x^9 + 26325*x^8 - 82590*x^7 + 133855*x^6 - 118608*x^5 - 10557*x^4 + 162203*x^3 - 207960*x^2 - 124860*x + 447697, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])