Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 81 x^{15} + 663 x^{13} - 2804 x^{12} + 6810 x^{11} - 9780 x^{10} + 2806 x^{9} + 26325 x^{8} - 82590 x^{7} + 133855 x^{6} - 118608 x^{5} - 10557 x^{4} + 162203 x^{3} - 207960 x^{2} - 124860 x + 447697 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-328810524890493731499656799939=-\,3^{27}\cdot 73^{3}\cdot 577^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} + \frac{8}{19} a^{15} - \frac{1}{19} a^{14} + \frac{2}{19} a^{12} - \frac{6}{19} a^{11} - \frac{3}{19} a^{10} + \frac{7}{19} a^{9} - \frac{3}{19} a^{8} + \frac{5}{19} a^{7} + \frac{6}{19} a^{6} + \frac{7}{19} a^{4} - \frac{5}{19} a^{3} + \frac{3}{19} a^{2} + \frac{4}{19} a$, $\frac{1}{72421466480294482646558577814319139048876178327} a^{17} + \frac{20487657695362488911042473513325091977271562}{72421466480294482646558577814319139048876178327} a^{16} - \frac{34193003908714310056575393919600119747449093112}{72421466480294482646558577814319139048876178327} a^{15} - \frac{22951273304727474264305134180730705186503423014}{72421466480294482646558577814319139048876178327} a^{14} - \frac{15349652702740154590440501199156013452784917271}{72421466480294482646558577814319139048876178327} a^{13} - \frac{4788703653216406580118479681412796149342433215}{72421466480294482646558577814319139048876178327} a^{12} - \frac{32096887841855548245874279710248944899924053012}{72421466480294482646558577814319139048876178327} a^{11} - \frac{1814951732574252279307137253702753831292313227}{3811656130541814876134661990227323107835588333} a^{10} - \frac{10261181053351183825824410896214351239295765897}{72421466480294482646558577814319139048876178327} a^{9} + \frac{20341268614629373433414314091095896801255569261}{72421466480294482646558577814319139048876178327} a^{8} + \frac{8271591380474029622641976145462272719978069421}{72421466480294482646558577814319139048876178327} a^{7} + \frac{16867540317652464292229448583050928668451051940}{72421466480294482646558577814319139048876178327} a^{6} - \frac{3033873273636201337430388358206140161491501693}{72421466480294482646558577814319139048876178327} a^{5} + \frac{1538992839514353260197891778482431625856196027}{72421466480294482646558577814319139048876178327} a^{4} - \frac{2989110835071840876945525367128495426303438888}{72421466480294482646558577814319139048876178327} a^{3} - \frac{18634929182085705765579346909919115460604068407}{72421466480294482646558577814319139048876178327} a^{2} - \frac{2520119628606798495190037330819628973281247554}{72421466480294482646558577814319139048876178327} a - \frac{279481876399498681287691670057903559358593691}{3811656130541814876134661990227323107835588333}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3507229.71507 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||