Normalized defining polynomial
\( x^{18} - 9 x^{17} + 63 x^{16} - 300 x^{15} + 1125 x^{14} - 3339 x^{13} + 7554 x^{12} - 12915 x^{11} + 11061 x^{10} + 11960 x^{9} - 80865 x^{8} + 194967 x^{7} - 325767 x^{6} + 398124 x^{5} - 346464 x^{4} + 206832 x^{3} - 47088 x^{2} - 14940 x + 22628 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3258180556352735703113612132352=-\,2^{26}\cdot 3^{24}\cdot 37^{6}\cdot 67\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{5}{12} a^{5} + \frac{1}{4} a^{4} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{36} a^{12} + \frac{1}{36} a^{9} - \frac{1}{12} a^{8} - \frac{1}{9} a^{6} + \frac{1}{12} a^{5} + \frac{2}{9} a^{3} - \frac{1}{6} a^{2} - \frac{2}{9}$, $\frac{1}{36} a^{13} + \frac{1}{36} a^{10} - \frac{1}{12} a^{9} - \frac{1}{9} a^{7} + \frac{1}{12} a^{6} + \frac{2}{9} a^{4} - \frac{1}{6} a^{3} - \frac{2}{9} a$, $\frac{1}{72} a^{14} - \frac{1}{72} a^{13} + \frac{1}{72} a^{11} + \frac{1}{36} a^{10} - \frac{1}{24} a^{9} - \frac{1}{18} a^{8} - \frac{5}{72} a^{7} - \frac{1}{24} a^{6} - \frac{7}{18} a^{5} - \frac{4}{9} a^{4} + \frac{7}{18} a^{2} - \frac{1}{18} a - \frac{1}{6}$, $\frac{1}{72} a^{15} - \frac{1}{72} a^{13} - \frac{1}{72} a^{12} - \frac{1}{24} a^{11} - \frac{1}{72} a^{10} + \frac{1}{24} a^{9} + \frac{1}{24} a^{8} + \frac{5}{36} a^{7} + \frac{1}{72} a^{6} + \frac{5}{12} a^{5} + \frac{11}{36} a^{4} + \frac{5}{18} a + \frac{1}{18}$, $\frac{1}{1992544128} a^{16} - \frac{1}{249068016} a^{15} - \frac{1673293}{996272064} a^{14} + \frac{11713121}{996272064} a^{13} - \frac{2644967}{221393792} a^{12} + \frac{1083013}{498136032} a^{11} + \frac{10763429}{1992544128} a^{10} - \frac{2831521}{996272064} a^{9} - \frac{7500545}{996272064} a^{8} - \frac{18914309}{249068016} a^{7} - \frac{85175821}{664181376} a^{6} - \frac{13938257}{249068016} a^{5} + \frac{87194105}{249068016} a^{4} - \frac{63276985}{498136032} a^{3} - \frac{143857331}{498136032} a^{2} - \frac{27905693}{83022672} a - \frac{31297687}{498136032}$, $\frac{1}{15850688538240} a^{17} + \frac{441}{1761187615360} a^{16} - \frac{3091548661}{1585068853824} a^{15} + \frac{2712015983}{396267213456} a^{14} + \frac{39168280999}{3170137707648} a^{13} + \frac{69302805421}{15850688538240} a^{12} + \frac{16917606499}{5283562846080} a^{11} - \frac{317933015749}{15850688538240} a^{10} + \frac{15872631917}{1320890711520} a^{9} + \frac{319218848171}{7925344269120} a^{8} + \frac{2630371529041}{15850688538240} a^{7} + \frac{499783745749}{3170137707648} a^{6} - \frac{17097348431}{82555669470} a^{5} + \frac{744205486777}{3962672134560} a^{4} - \frac{28280591}{511973144} a^{3} - \frac{835414561337}{3962672134560} a^{2} - \frac{345449430133}{3962672134560} a - \frac{470813814559}{3962672134560}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 932279693.077 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |