Properties

Label 18.4.30888447366...1616.2
Degree $18$
Signature $[4, 7]$
Discriminant $-\,2^{18}\cdot 101^{7}\cdot 479^{3}$
Root discriminant $33.67$
Ramified primes $2, 101, 479$
Class number $2$
Class group $[2]$
Galois group 18T880

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-392, 2072, -3776, 4328, -4344, -712, 3272, -3068, 688, -764, 1448, -1208, 478, 6, 0, -24, 22, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 22*x^16 - 24*x^15 + 6*x^13 + 478*x^12 - 1208*x^11 + 1448*x^10 - 764*x^9 + 688*x^8 - 3068*x^7 + 3272*x^6 - 712*x^5 - 4344*x^4 + 4328*x^3 - 3776*x^2 + 2072*x - 392)
 
gp: K = bnfinit(x^18 - 6*x^17 + 22*x^16 - 24*x^15 + 6*x^13 + 478*x^12 - 1208*x^11 + 1448*x^10 - 764*x^9 + 688*x^8 - 3068*x^7 + 3272*x^6 - 712*x^5 - 4344*x^4 + 4328*x^3 - 3776*x^2 + 2072*x - 392, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 22 x^{16} - 24 x^{15} + 6 x^{13} + 478 x^{12} - 1208 x^{11} + 1448 x^{10} - 764 x^{9} + 688 x^{8} - 3068 x^{7} + 3272 x^{6} - 712 x^{5} - 4344 x^{4} + 4328 x^{3} - 3776 x^{2} + 2072 x - 392 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-3088844736629670323038191616=-\,2^{18}\cdot 101^{7}\cdot 479^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 101, 479$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{4} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{223807969691346298466465560268} a^{17} - \frac{5433289608314521048544900023}{223807969691346298466465560268} a^{16} - \frac{2714133371042529224144511347}{111903984845673149233232780134} a^{15} + \frac{6076644208261391087649977323}{55951992422836574616616390067} a^{14} + \frac{8789989914864645043303042}{7993141774690939230945198581} a^{13} + \frac{4709189953765045982818695977}{223807969691346298466465560268} a^{12} + \frac{181802829509349864814219383}{3858758098126660318387337246} a^{11} + \frac{3036395647482451622872104873}{55951992422836574616616390067} a^{10} - \frac{7327819730444061258624081907}{111903984845673149233232780134} a^{9} + \frac{6029683140903040369568852163}{111903984845673149233232780134} a^{8} + \frac{13649232657727869685589745573}{55951992422836574616616390067} a^{7} - \frac{14378307280048059828752149445}{111903984845673149233232780134} a^{6} - \frac{26348111163184734759398001237}{55951992422836574616616390067} a^{5} + \frac{15846396098488292163544142079}{55951992422836574616616390067} a^{4} - \frac{13532883063060071317229523454}{55951992422836574616616390067} a^{3} - \frac{21492016993006890759702301395}{55951992422836574616616390067} a^{2} - \frac{20218539582189621142235972478}{55951992422836574616616390067} a + \frac{354672614097183113428444105}{7993141774690939230945198581}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2417831.57679 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T880:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 331776
The 165 conjugacy class representatives for t18n880 are not computed
Character table for t18n880 is not computed

Intermediate fields

3.3.404.1, 9.7.31584907456.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
101Data not computed
479Data not computed