Normalized defining polynomial
\( x^{18} - 8 x^{17} + 24 x^{16} - 42 x^{15} + 50 x^{14} + 88 x^{13} - 244 x^{12} + 636 x^{11} - 920 x^{10} + 1560 x^{9} - 3316 x^{8} + 4672 x^{7} - 6748 x^{6} + 4432 x^{5} - 2680 x^{4} - 1080 x^{3} + 1240 x^{2} - 1176 x + 392 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3088844736629670323038191616=-\,2^{18}\cdot 101^{7}\cdot 479^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{28} a^{15} - \frac{1}{28} a^{14} + \frac{1}{28} a^{13} + \frac{1}{14} a^{12} + \frac{3}{14} a^{11} - \frac{1}{7} a^{9} + \frac{3}{14} a^{8} - \frac{1}{14} a^{7} - \frac{3}{14} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{28} a^{16} + \frac{3}{28} a^{13} + \frac{1}{28} a^{12} + \frac{3}{14} a^{11} - \frac{1}{7} a^{10} + \frac{1}{14} a^{9} + \frac{1}{7} a^{8} + \frac{3}{14} a^{7} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{89171759356485208204737628} a^{17} + \frac{726082694062643325307345}{44585879678242604102368814} a^{16} - \frac{19142062550227866121029}{8106523577862291654976148} a^{15} + \frac{728276892692728687129586}{22292939839121302051184407} a^{14} + \frac{765108037128040295812267}{89171759356485208204737628} a^{13} - \frac{7333804185257251071196919}{89171759356485208204737628} a^{12} - \frac{7797135189770089778828221}{44585879678242604102368814} a^{11} + \frac{3960599259426068683103717}{44585879678242604102368814} a^{10} + \frac{3788549518819799722300537}{44585879678242604102368814} a^{9} + \frac{552273298094325248718265}{4053261788931145827488074} a^{8} - \frac{1059071002796391675607669}{6369411382606086300338402} a^{7} - \frac{2965258882715438533721895}{44585879678242604102368814} a^{6} + \frac{3975463150777795878182760}{22292939839121302051184407} a^{5} + \frac{2545194266400982398424498}{22292939839121302051184407} a^{4} - \frac{11046387123822279299696858}{22292939839121302051184407} a^{3} + \frac{2132287711495100462815233}{22292939839121302051184407} a^{2} - \frac{767643243376700097019944}{22292939839121302051184407} a - \frac{406083755495932340647682}{3184705691303043150169201}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1665288.64581 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n880 are not computed |
| Character table for t18n880 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||