Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} + 5 x^{15} - 480 x^{14} + 2544 x^{13} - 9267 x^{12} + 23430 x^{11} - 46083 x^{10} + 78591 x^{9} - 99219 x^{8} + 134766 x^{7} - 115747 x^{6} + 149169 x^{5} - 76062 x^{4} + 93928 x^{3} + 7833 x^{2} + 23652 x + 37981 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3036795991579620615531492351603=-\,3^{27}\cdot 73^{5}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{86147113579821441617924820106068907321171785437} a^{17} + \frac{13170537161516834629308826356267236605100672995}{86147113579821441617924820106068907321171785437} a^{16} - \frac{1940671341369281266647622961555200964222124615}{86147113579821441617924820106068907321171785437} a^{15} + \frac{37906693838686658522362506105218289996246660683}{86147113579821441617924820106068907321171785437} a^{14} - \frac{8219643456341000132392959626767282828823306951}{86147113579821441617924820106068907321171785437} a^{13} + \frac{14301367105514379225496086755202502067471517356}{86147113579821441617924820106068907321171785437} a^{12} + \frac{24011956768153235179041669443703500658159061912}{86147113579821441617924820106068907321171785437} a^{11} + \frac{31214613176716814822887617126088573772758801776}{86147113579821441617924820106068907321171785437} a^{10} - \frac{16164105297676493389015212294419748797695194756}{86147113579821441617924820106068907321171785437} a^{9} - \frac{27199104888884565947694923616787993743472126178}{86147113579821441617924820106068907321171785437} a^{8} - \frac{3822628952135973971606407089303354990587552733}{86147113579821441617924820106068907321171785437} a^{7} + \frac{7642630527887101252815850612552432911428093927}{86147113579821441617924820106068907321171785437} a^{6} - \frac{21564764910763594455117124467431030009881691515}{86147113579821441617924820106068907321171785437} a^{5} - \frac{139786473558769787847582385211764232259079786}{1213339627884809036872180564874209962270025147} a^{4} - \frac{2342476705916381471485806734306547023170280493}{86147113579821441617924820106068907321171785437} a^{3} - \frac{40024409500029224293014842920763779305384103030}{86147113579821441617924820106068907321171785437} a^{2} + \frac{20746070045563038873397585813330093035928281124}{86147113579821441617924820106068907321171785437} a + \frac{29744387660717385401430306137705459629144488799}{86147113579821441617924820106068907321171785437}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31302538.0806 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||