Normalized defining polynomial
\( x^{18} + 17 x^{16} - 64 x^{15} + 83 x^{14} - 614 x^{13} - 136 x^{12} - 1682 x^{11} + 346 x^{10} + 898 x^{9} + 4897 x^{8} + 4488 x^{7} + 5075 x^{6} + 12286 x^{5} + 341 x^{4} - 5774 x^{3} - 5006 x^{2} + 6202 x - 1811 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-287751882445035327420458860544=-\,2^{18}\cdot 97^{2}\cdot 101^{6}\cdot 479^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{10310974352716247597588496281588276617228907} a^{17} - \frac{368920037244195328850163863641560939824385}{10310974352716247597588496281588276617228907} a^{16} + \frac{2936861248470071621910918470985402487402813}{10310974352716247597588496281588276617228907} a^{15} - \frac{4328914010500115993868359346265046396562611}{10310974352716247597588496281588276617228907} a^{14} - \frac{1445097844571988479529126479332567163718506}{10310974352716247597588496281588276617228907} a^{13} + \frac{2511014348287753823062434783450294586695288}{10310974352716247597588496281588276617228907} a^{12} + \frac{4196691757957848822642662323379227357215143}{10310974352716247597588496281588276617228907} a^{11} - \frac{380698650708494128746431323826500232304801}{10310974352716247597588496281588276617228907} a^{10} - \frac{4905059885918127085012397351991826939367067}{10310974352716247597588496281588276617228907} a^{9} - \frac{4218126594716817722341109788607232603517091}{10310974352716247597588496281588276617228907} a^{8} + \frac{449836767684895576431752181736788081513172}{10310974352716247597588496281588276617228907} a^{7} + \frac{3466547315466756200665208767531926868954244}{10310974352716247597588496281588276617228907} a^{6} + \frac{1173577813986762565524912518516960023057112}{10310974352716247597588496281588276617228907} a^{5} - \frac{4815747862287775854307818869957994891255109}{10310974352716247597588496281588276617228907} a^{4} - \frac{627104678813022144644080156797020251224121}{10310974352716247597588496281588276617228907} a^{3} - \frac{1281706911463642315023985587646826511605290}{10310974352716247597588496281588276617228907} a^{2} + \frac{4742256058566912277880164022236928203488637}{10310974352716247597588496281588276617228907} a + \frac{1113182622430363643979772286370696701652246}{10310974352716247597588496281588276617228907}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20125395.138 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n885 are not computed |
| Character table for t18n885 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||