Normalized defining polynomial
\( x^{18} + 9 x^{16} - 54 x^{15} + 36 x^{14} - 162 x^{13} + 825 x^{12} - 1116 x^{11} - 2430 x^{10} - 10890 x^{9} + 7443 x^{8} + 38700 x^{7} + 22317 x^{6} - 188082 x^{5} - 283806 x^{4} - 116766 x^{3} + 101286 x^{2} + 132408 x + 18678 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2859175906114106301567241862578176=-\,2^{16}\cdot 3^{37}\cdot 7^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{8} a^{15} + \frac{1}{8} a^{11} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{712} a^{16} - \frac{4}{89} a^{15} - \frac{13}{356} a^{14} - \frac{11}{178} a^{13} + \frac{53}{712} a^{12} + \frac{15}{178} a^{11} + \frac{47}{356} a^{10} - \frac{101}{356} a^{9} - \frac{193}{712} a^{8} + \frac{27}{356} a^{7} - \frac{147}{356} a^{6} + \frac{1}{4} a^{5} - \frac{22}{89} a^{4} - \frac{1}{2} a^{3} + \frac{61}{356} a^{2} - \frac{41}{178} a - \frac{59}{178}$, $\frac{1}{6651981092216289161214799095448971284616376} a^{17} - \frac{3636667575502665168704371785658076454893}{6651981092216289161214799095448971284616376} a^{16} + \frac{98667237301285486823133419822965200081477}{6651981092216289161214799095448971284616376} a^{15} + \frac{54073659855796746027849044942289034090929}{6651981092216289161214799095448971284616376} a^{14} - \frac{830812455062825072016982176992343723597783}{6651981092216289161214799095448971284616376} a^{13} - \frac{342699618754827483972253809040159306169509}{6651981092216289161214799095448971284616376} a^{12} - \frac{601304711409179387834447847131055553589041}{6651981092216289161214799095448971284616376} a^{11} + \frac{1503095789001760285917118559516507031902013}{6651981092216289161214799095448971284616376} a^{10} + \frac{417342097091124801934818890757651680027139}{950283013173755594459257013635567326373768} a^{9} - \frac{2145184980097646440890125941793194204272345}{6651981092216289161214799095448971284616376} a^{8} + \frac{3148854925424057528017487610073484566982859}{6651981092216289161214799095448971284616376} a^{7} - \frac{2103916321987801567958585126441231116874723}{6651981092216289161214799095448971284616376} a^{6} - \frac{64697679995245122600392448899449156778783}{175052134005691820031968397248657139068852} a^{5} - \frac{1283549316804177450521955720500670319570185}{3325990546108144580607399547724485642308188} a^{4} + \frac{419134759893211448872689847210454667733305}{1662995273054072290303699773862242821154094} a^{3} + \frac{867164016052764675037455644045130686965061}{3325990546108144580607399547724485642308188} a^{2} - \frac{24119561828913969821505992755459338733391}{175052134005691820031968397248657139068852} a + \frac{82170569013988759124859766671922036659705}{3325990546108144580607399547724485642308188}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6789551173.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.11.3 | $x^{12} + 224$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $[\ ]_{12}^{2}$ | |