Normalized defining polynomial
\( x^{18} + 36 x^{16} + 513 x^{14} + 3762 x^{12} + 15318 x^{10} + 34200 x^{8} + 36810 x^{6} + 9747 x^{4} - 7182 x^{2} + 171 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2449190169307579898330157625344=-\,2^{12}\cdot 3^{32}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{3} a^{12}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{420} a^{14} - \frac{29}{210} a^{12} - \frac{2}{35} a^{10} - \frac{2}{7} a^{8} - \frac{31}{70} a^{6} + \frac{1}{5} a^{4} + \frac{4}{35} a^{2} - \frac{47}{140}$, $\frac{1}{840} a^{15} - \frac{1}{840} a^{14} - \frac{29}{420} a^{13} + \frac{29}{420} a^{12} + \frac{29}{210} a^{11} - \frac{29}{210} a^{10} + \frac{1}{42} a^{9} - \frac{5}{14} a^{8} + \frac{39}{140} a^{7} - \frac{39}{140} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{35} a^{3} - \frac{2}{35} a^{2} - \frac{47}{280} a + \frac{47}{280}$, $\frac{1}{48745200} a^{16} + \frac{22109}{48745200} a^{14} + \frac{56047}{4874520} a^{12} + \frac{259403}{2031050} a^{10} + \frac{1092429}{8124200} a^{8} + \frac{565417}{8124200} a^{6} + \frac{210547}{1015525} a^{4} + \frac{1157549}{3249680} a^{2} + \frac{7972191}{16248400}$, $\frac{1}{97490400} a^{17} - \frac{1}{97490400} a^{16} + \frac{22109}{97490400} a^{15} - \frac{22109}{97490400} a^{14} + \frac{56047}{9749040} a^{13} - \frac{56047}{9749040} a^{12} - \frac{1252841}{12186300} a^{11} + \frac{1252841}{12186300} a^{10} + \frac{1092429}{16248400} a^{9} - \frac{1092429}{16248400} a^{8} + \frac{565417}{16248400} a^{7} - \frac{565417}{16248400} a^{6} + \frac{210547}{2031050} a^{5} - \frac{210547}{2031050} a^{4} + \frac{1157549}{6499360} a^{3} - \frac{1157549}{6499360} a^{2} + \frac{7972191}{32496800} a - \frac{7972191}{32496800}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 142606633.977 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 13824 |
| The 96 conjugacy class representatives for t18n585 are not computed |
| Character table for t18n585 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.5609891727441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $19$ | 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |