Normalized defining polynomial
\( x^{18} - 6 x^{17} + 42 x^{16} - 155 x^{15} + 458 x^{14} - 1099 x^{13} + 628 x^{12} - 142 x^{11} - 11420 x^{10} + 22741 x^{9} - 52371 x^{8} + 49129 x^{7} - 35570 x^{6} - 39513 x^{5} + 97174 x^{4} - 84904 x^{3} + 149163 x^{2} - 19523 x + 118391 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23431125972725566736546343481344=-\,2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 41^{8}\cdot 71\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a + \frac{5}{16}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{12} + \frac{3}{32} a^{11} + \frac{1}{32} a^{10} + \frac{3}{32} a^{9} - \frac{1}{16} a^{8} + \frac{3}{32} a^{7} - \frac{7}{32} a^{6} - \frac{3}{16} a^{5} + \frac{1}{32} a^{4} + \frac{1}{4} a^{3} - \frac{5}{32} a^{2} + \frac{5}{32} a - \frac{3}{32}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{32} a^{13} - \frac{3}{64} a^{12} - \frac{1}{32} a^{11} - \frac{3}{32} a^{10} + \frac{3}{64} a^{9} + \frac{5}{64} a^{8} - \frac{5}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{64} a^{5} + \frac{15}{64} a^{4} + \frac{27}{64} a^{3} + \frac{5}{32} a^{2} + \frac{1}{4} a + \frac{11}{64}$, $\frac{1}{256} a^{16} + \frac{1}{256} a^{14} - \frac{5}{256} a^{13} - \frac{13}{256} a^{12} + \frac{5}{64} a^{11} + \frac{17}{256} a^{10} + \frac{1}{64} a^{9} - \frac{29}{256} a^{8} + \frac{51}{256} a^{7} + \frac{5}{64} a^{6} + \frac{11}{128} a^{5} + \frac{23}{128} a^{4} + \frac{37}{256} a^{3} - \frac{61}{128} a^{2} + \frac{63}{256} a + \frac{15}{256}$, $\frac{1}{73933173323494163130254626281238524928} a^{17} - \frac{19138633012379023625296669959730939}{73933173323494163130254626281238524928} a^{16} + \frac{14200266724105528974052068271293905}{73933173323494163130254626281238524928} a^{15} - \frac{26447768065857977308335320877470327}{2310411666359192597820457071288703904} a^{14} - \frac{1093550024836456227732222795866858803}{36966586661747081565127313140619262464} a^{13} + \frac{2433783185940151278180936475415410595}{73933173323494163130254626281238524928} a^{12} - \frac{1344607817050224711235359691249479675}{73933173323494163130254626281238524928} a^{11} + \frac{2835792012498939152911481423194495785}{73933173323494163130254626281238524928} a^{10} - \frac{1135818950556258724134616553787824169}{73933173323494163130254626281238524928} a^{9} - \frac{1188239276468367971137709561833753303}{36966586661747081565127313140619262464} a^{8} + \frac{13543042506539836460015408548782467715}{73933173323494163130254626281238524928} a^{7} - \frac{9181527217526710268468974386634783923}{36966586661747081565127313140619262464} a^{6} - \frac{4275433990534615997705657583385217733}{18483293330873540782563656570309631232} a^{5} + \frac{12581462825437023261742200228698967851}{73933173323494163130254626281238524928} a^{4} - \frac{17426054284188835268366560075438869361}{73933173323494163130254626281238524928} a^{3} + \frac{10901363103746582670786127256932176109}{73933173323494163130254626281238524928} a^{2} + \frac{15500911139801320139625535837276935197}{36966586661747081565127313140619262464} a + \frac{6428480457064435806958318369304795531}{73933173323494163130254626281238524928}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 904544660.09 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 41 | Data not computed | ||||||
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |