Normalized defining polynomial
\( x^{18} - 6 x^{17} + 32 x^{16} - 90 x^{15} + 160 x^{14} - 20 x^{13} - 832 x^{12} + 1632 x^{11} - 5288 x^{10} + 6204 x^{9} - 24324 x^{8} - 12936 x^{7} - 8508 x^{6} - 50048 x^{5} - 184088 x^{4} - 100864 x^{3} + 76488 x^{2} + 87792 x - 10888 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-188521017135728366078671192064=-\,2^{24}\cdot 37^{6}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{14} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{15} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{16} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3920404932870291701049085674323573664468} a^{17} + \frac{29796222663442961706749134506689513761}{1960202466435145850524542837161786832234} a^{16} + \frac{10199914774694292575707973123371622315}{653400822145048616841514279053928944078} a^{15} + \frac{2361322264895627403453098893969204715}{653400822145048616841514279053928944078} a^{14} + \frac{67877531247481822270508895227181804241}{3920404932870291701049085674323573664468} a^{13} + \frac{6366299797808714978612528561347475505}{435600548096699077894342852702619296052} a^{12} - \frac{16064743067085722934155832569157258277}{980101233217572925262271418580893416117} a^{11} + \frac{114963158797794097340333368679702948273}{1960202466435145850524542837161786832234} a^{10} + \frac{21623649007201355555863614224616211473}{108900137024174769473585713175654824013} a^{9} + \frac{57711662589169449195677874778152702988}{326700411072524308420757139526964472039} a^{8} - \frac{23854096974210427582329736909696080605}{217800274048349538947171426351309648026} a^{7} + \frac{12949298926719140913189203357775154769}{653400822145048616841514279053928944078} a^{6} + \frac{37770436505786161434710437287644586920}{326700411072524308420757139526964472039} a^{5} + \frac{41606960507637957222200918908088825098}{980101233217572925262271418580893416117} a^{4} - \frac{24108147143007697468721801346699723250}{108900137024174769473585713175654824013} a^{3} + \frac{381529166546203144549297663146867992516}{980101233217572925262271418580893416117} a^{2} + \frac{357650121003367728172240015911396582313}{980101233217572925262271418580893416117} a + \frac{201707756622507074634539185769246085722}{980101233217572925262271418580893416117}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13108522.4296 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 16361 | Data not computed | ||||||