Normalized defining polynomial
\( x^{18} + 13 x^{16} + 12 x^{14} - 208 x^{12} - 418 x^{10} + 586 x^{8} + 1740 x^{6} + 952 x^{4} + 73 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178491902137640086523674624=-\,2^{16}\cdot 37^{6}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{3}{8}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{3}{16} a + \frac{1}{16}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{16} a^{2} + \frac{3}{8} a - \frac{3}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{8} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a - \frac{5}{16}$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{8} + \frac{3}{32} a^{4} - \frac{1}{2} a^{2} - \frac{5}{32}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{9} - \frac{1}{64} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{5}{64} a^{5} - \frac{11}{64} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{3}{64} a + \frac{13}{64}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{12} + \frac{1}{64} a^{10} - \frac{1}{64} a^{8} + \frac{3}{64} a^{6} + \frac{13}{64} a^{4} - \frac{21}{64} a^{2} + \frac{5}{64}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{1}{128} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{1}{128} a^{8} + \frac{3}{128} a^{7} - \frac{3}{128} a^{6} - \frac{19}{128} a^{5} - \frac{19}{128} a^{4} - \frac{21}{128} a^{3} + \frac{53}{128} a^{2} - \frac{27}{128} a + \frac{5}{128}$, $\frac{1}{29824} a^{16} - \frac{37}{14912} a^{14} - \frac{37}{14912} a^{12} + \frac{319}{14912} a^{10} + \frac{29}{932} a^{8} + \frac{1}{14912} a^{6} - \frac{1547}{14912} a^{4} + \frac{7381}{14912} a^{2} + \frac{12191}{29824}$, $\frac{1}{59648} a^{17} - \frac{1}{59648} a^{16} - \frac{37}{29824} a^{15} - \frac{49}{7456} a^{14} - \frac{37}{29824} a^{13} - \frac{49}{7456} a^{12} + \frac{319}{29824} a^{11} - \frac{69}{3728} a^{10} + \frac{29}{1864} a^{9} + \frac{1167}{29824} a^{8} - \frac{3727}{29824} a^{7} + \frac{757}{7456} a^{6} - \frac{5275}{29824} a^{5} - \frac{45}{466} a^{4} - \frac{3803}{29824} a^{3} - \frac{777}{3728} a^{2} - \frac{10177}{59648} a - \frac{28501}{59648}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1658736.10138 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for t18n623 are not computed |
| Character table for t18n623 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.404.1, 9.9.3340021539392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||
| $101$ | 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.12.6.1 | $x^{12} + 6181806 x^{6} - 10510100501 x^{2} + 9553681355409$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |