Normalized defining polynomial
\( x^{18} - 5 x^{17} + 12 x^{16} + 15 x^{15} - 128 x^{14} + 425 x^{13} - 703 x^{12} + 2280 x^{11} - 3602 x^{10} + 6532 x^{9} - 120 x^{8} - 12928 x^{7} + 17384 x^{6} - 16720 x^{5} - 608 x^{4} + 11712 x^{3} - 3104 x^{2} - 2432 x + 832 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1645711793419959485319741440000=-\,2^{20}\cdot 5^{4}\cdot 37^{8}\cdot 59^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{3}{16} a^{9} - \frac{3}{16} a^{8} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{16} a^{13} + \frac{1}{32} a^{12} - \frac{1}{8} a^{11} + \frac{3}{32} a^{10} + \frac{5}{32} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4448} a^{16} - \frac{11}{1112} a^{15} - \frac{77}{4448} a^{14} - \frac{267}{4448} a^{13} - \frac{155}{4448} a^{12} - \frac{319}{4448} a^{11} + \frac{77}{1112} a^{10} - \frac{223}{4448} a^{9} + \frac{71}{556} a^{8} - \frac{333}{1112} a^{7} - \frac{121}{556} a^{6} + \frac{119}{1112} a^{5} - \frac{181}{556} a^{4} + \frac{21}{139} a^{3} + \frac{89}{278} a^{2} + \frac{125}{278} a - \frac{13}{139}$, $\frac{1}{5466822335101536018651715770176} a^{17} - \frac{444317933650034689752161329}{5466822335101536018651715770176} a^{16} - \frac{19914673862165242595810639845}{1366705583775384004662928942544} a^{15} + \frac{79328406216592189299097162723}{5466822335101536018651715770176} a^{14} + \frac{22871579260048204255226736157}{683352791887692002331464471272} a^{13} + \frac{70705678187583795064278886609}{5466822335101536018651715770176} a^{12} + \frac{13955018031324598800898965509}{5466822335101536018651715770176} a^{11} + \frac{114526832744987658228698498841}{1366705583775384004662928942544} a^{10} - \frac{303033979271903394875911823787}{2733411167550768009325857885088} a^{9} + \frac{7846829614137320411750095979}{85419098985961500291433058909} a^{8} + \frac{380576013250103373716532956749}{1366705583775384004662928942544} a^{7} + \frac{40972817143893659053231493959}{683352791887692002331464471272} a^{6} + \frac{250411274362024250624082401483}{683352791887692002331464471272} a^{5} - \frac{27031091571106944205928626186}{85419098985961500291433058909} a^{4} - \frac{8831995388408139767767149943}{341676395943846001165732235636} a^{3} + \frac{10007617870697751275810934264}{85419098985961500291433058909} a^{2} - \frac{15213133145653459789403431913}{170838197971923000582866117818} a - \frac{5882838281298175308143155366}{85419098985961500291433058909}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109749236.151 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.19 | $x^{12} + x^{10} - 2 x^{8} - 3 x^{6} + 2 x^{4} - 3 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_2\times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $59$ | 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 59.6.5.2 | $x^{6} + 177$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |