Normalized defining polynomial
\( x^{18} - 18 x^{16} - 7 x^{15} + 135 x^{14} + 105 x^{13} - 574 x^{12} - 630 x^{11} + 1623 x^{10} + 1514 x^{9} - 3294 x^{8} + 549 x^{7} + 3697 x^{6} - 8451 x^{5} + 1470 x^{4} + 6648 x^{3} - 6336 x^{2} + 10512 x - 2848 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-159989996381778068639555586097152=-\,2^{19}\cdot 3^{18}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{1}{16} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{5}{32} a^{5} - \frac{1}{16} a^{4} + \frac{9}{32} a^{3} - \frac{1}{32} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{64} a^{10} + \frac{1}{64} a^{8} - \frac{7}{64} a^{7} - \frac{5}{64} a^{6} - \frac{1}{16} a^{5} + \frac{5}{64} a^{4} + \frac{23}{64} a^{3} - \frac{5}{32} a^{2} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{128} a^{11} - \frac{1}{128} a^{10} + \frac{1}{128} a^{9} + \frac{5}{64} a^{7} + \frac{1}{128} a^{6} + \frac{1}{128} a^{5} - \frac{15}{64} a^{4} + \frac{31}{128} a^{3} + \frac{11}{64} a^{2} - \frac{11}{32} a + \frac{1}{16}$, $\frac{1}{512} a^{12} - \frac{1}{128} a^{10} - \frac{3}{512} a^{9} - \frac{1}{256} a^{8} + \frac{35}{512} a^{7} - \frac{3}{256} a^{6} - \frac{49}{512} a^{5} + \frac{37}{512} a^{4} - \frac{235}{512} a^{3} + \frac{119}{256} a^{2} + \frac{31}{128} a - \frac{17}{64}$, $\frac{1}{512} a^{13} + \frac{1}{512} a^{10} + \frac{1}{256} a^{9} + \frac{11}{512} a^{8} - \frac{27}{256} a^{7} + \frac{43}{512} a^{6} + \frac{41}{512} a^{5} + \frac{133}{512} a^{4} - \frac{47}{256} a^{3} + \frac{57}{128} a^{2} - \frac{19}{64} a + \frac{3}{16}$, $\frac{1}{1024} a^{14} - \frac{1}{1024} a^{13} + \frac{1}{1024} a^{11} + \frac{1}{1024} a^{10} - \frac{7}{1024} a^{9} + \frac{31}{1024} a^{8} + \frac{81}{1024} a^{7} + \frac{7}{512} a^{6} + \frac{19}{256} a^{5} - \frac{131}{1024} a^{4} + \frac{25}{512} a^{3} + \frac{29}{256} a^{2} - \frac{25}{128} a + \frac{15}{32}$, $\frac{1}{16384} a^{15} - \frac{15}{16384} a^{13} + \frac{3}{16384} a^{12} - \frac{19}{8192} a^{11} + \frac{23}{4096} a^{10} + \frac{55}{8192} a^{9} + \frac{81}{8192} a^{8} - \frac{1351}{16384} a^{7} - \frac{345}{4096} a^{6} - \frac{3039}{16384} a^{5} + \frac{5555}{16384} a^{4} - \frac{1029}{4096} a^{3} - \frac{221}{512} a^{2} + \frac{7}{64} a - \frac{123}{1024}$, $\frac{1}{16384} a^{16} + \frac{1}{16384} a^{14} - \frac{13}{16384} a^{13} - \frac{3}{8192} a^{12} - \frac{5}{4096} a^{11} + \frac{63}{8192} a^{10} - \frac{87}{8192} a^{9} + \frac{105}{16384} a^{8} + \frac{195}{4096} a^{7} + \frac{961}{16384} a^{6} + \frac{4051}{16384} a^{5} + \frac{215}{4096} a^{4} - \frac{171}{512} a^{3} - \frac{11}{64} a^{2} - \frac{491}{1024} a + \frac{25}{64}$, $\frac{1}{32768} a^{17} - \frac{1}{32768} a^{16} - \frac{1}{32768} a^{15} - \frac{7}{16384} a^{14} - \frac{27}{32768} a^{13} - \frac{5}{8192} a^{12} - \frac{17}{16384} a^{11} + \frac{55}{8192} a^{10} - \frac{325}{32768} a^{9} + \frac{159}{32768} a^{8} + \frac{195}{32768} a^{7} + \frac{141}{16384} a^{6} - \frac{2041}{32768} a^{5} - \frac{7857}{16384} a^{4} - \frac{1503}{4096} a^{3} + \frac{9}{2048} a^{2} + \frac{59}{2048} a - \frac{461}{1024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16565696627.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| 3.3.961.1, 6.2.7388168.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | R | $18$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.10.1 | $x^{4} + 2 x^{2} - 9$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 3 | Data not computed | ||||||
| 31 | Data not computed | ||||||