Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 34 x^{15} + 57 x^{14} - 86 x^{13} + 121 x^{12} - 148 x^{11} + 136 x^{10} - 72 x^{9} - 7 x^{8} + 34 x^{7} + 13 x^{6} - 76 x^{5} + 94 x^{4} - 64 x^{3} + 24 x^{2} - 4 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-153308366766150516736=-\,2^{18}\cdot 353\cdot 587^{3}\cdot 8191\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 353, 587, 8191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{262939529} a^{17} + \frac{45061310}{262939529} a^{16} + \frac{76990138}{262939529} a^{15} - \frac{59169755}{262939529} a^{14} + \frac{9514618}{262939529} a^{13} - \frac{99484328}{262939529} a^{12} - \frac{59023764}{262939529} a^{11} + \frac{72022518}{262939529} a^{10} - \frac{33352522}{262939529} a^{9} - \frac{88078469}{262939529} a^{8} + \frac{56141303}{262939529} a^{7} + \frac{99352699}{262939529} a^{6} + \frac{72955316}{262939529} a^{5} + \frac{84862552}{262939529} a^{4} + \frac{91370253}{262939529} a^{3} - \frac{13608400}{262939529} a^{2} - \frac{93613258}{262939529} a - \frac{103236293}{262939529}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 654.309173347 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 33592320 |
| The 221 conjugacy class representatives for t18n962 are not computed |
| Character table for t18n962 is not computed |
Intermediate fields
| 6.2.37568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | $18$ | $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 353 | Data not computed | ||||||
| 587 | Data not computed | ||||||
| 8191 | Data not computed | ||||||