Normalized defining polynomial
\( x^{18} - 4 x^{16} - 16 x^{15} + 12 x^{14} + 28 x^{13} + 46 x^{12} - 148 x^{11} - 100 x^{10} + 332 x^{9} - 358 x^{8} + 1196 x^{7} - 1730 x^{6} - 136 x^{5} + 2332 x^{4} - 2208 x^{3} + 664 x^{2} + 128 x - 80 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-124470130898370390617227264=-\,2^{35}\cdot 167^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{56} a^{16} + \frac{3}{28} a^{15} + \frac{1}{28} a^{14} + \frac{3}{14} a^{13} - \frac{1}{14} a^{12} - \frac{5}{14} a^{11} - \frac{5}{28} a^{10} - \frac{3}{7} a^{8} + \frac{5}{14} a^{7} - \frac{11}{28} a^{6} + \frac{2}{7} a^{5} - \frac{11}{28} a^{4} - \frac{5}{14} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{1056171692428114069718512} a^{17} + \frac{4289421319080826625821}{528085846214057034859256} a^{16} + \frac{59393286674586017177107}{528085846214057034859256} a^{15} - \frac{1435437010120153640513}{66010730776757129357407} a^{14} - \frac{18212995223710473800157}{132021461553514258714814} a^{13} - \frac{43234002137766558554207}{264042923107028517429628} a^{12} + \frac{67420099899125911123603}{528085846214057034859256} a^{11} - \frac{513151093628904046504}{66010730776757129357407} a^{10} + \frac{116303833108154270039}{1404483633548024028881} a^{9} - \frac{27867866843852383093289}{264042923107028517429628} a^{8} + \frac{12829312938560793971465}{528085846214057034859256} a^{7} - \frac{17426125152018911869795}{132021461553514258714814} a^{6} - \frac{28655191195645571644797}{75440835173436719265608} a^{5} + \frac{82889641925296937209991}{264042923107028517429628} a^{4} - \frac{17562093474148742005274}{66010730776757129357407} a^{3} + \frac{11720811201137353088047}{132021461553514258714814} a^{2} - \frac{549779409172387814529}{1808513171965948749518} a - \frac{25394346349945253929160}{66010730776757129357407}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1793404.46456 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for t18n273 |
| Character table for t18n273 |
Intermediate fields
| 9.3.38153936896.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.24.338 | $x^{12} - 4 x^{11} - 2 x^{10} + 2 x^{8} + 8 x^{6} + 8 x^{5} + 4 x^{4} - 2 x^{2} - 4 x + 6$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 167 | Data not computed | ||||||