Normalized defining polynomial
\( x^{18} - 9 x^{17} + 42 x^{16} - 132 x^{15} + 189 x^{14} + 273 x^{13} - 2723 x^{12} + 9435 x^{11} - 20541 x^{10} + 31161 x^{9} - 24705 x^{8} - 10569 x^{7} + 75102 x^{6} - 133578 x^{5} + 150453 x^{4} - 115013 x^{3} + 59250 x^{2} - 18636 x + 2614 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1118479892479297330919598194688=-\,2^{26}\cdot 3^{24}\cdot 23\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{58} a^{14} - \frac{7}{58} a^{13} + \frac{7}{29} a^{12} + \frac{7}{58} a^{11} - \frac{21}{58} a^{10} - \frac{5}{29} a^{9} + \frac{3}{58} a^{8} + \frac{5}{58} a^{7} + \frac{7}{29} a^{6} - \frac{9}{58} a^{5} - \frac{15}{58} a^{4} + \frac{5}{29} a^{2} + \frac{4}{29} a - \frac{12}{29}$, $\frac{1}{290} a^{15} - \frac{7}{58} a^{13} - \frac{4}{29} a^{12} + \frac{72}{145} a^{11} - \frac{41}{290} a^{10} + \frac{2}{29} a^{9} - \frac{9}{29} a^{8} + \frac{107}{290} a^{7} - \frac{28}{145} a^{6} - \frac{39}{145} a^{5} - \frac{21}{58} a^{4} - \frac{19}{290} a^{3} + \frac{2}{29} a^{2} - \frac{42}{145} a - \frac{26}{145}$, $\frac{1}{16187374862900} a^{16} - \frac{2}{4046843715725} a^{15} + \frac{20546813663}{3237474972580} a^{14} - \frac{143827695613}{3237474972580} a^{13} - \frac{3313182527861}{16187374862900} a^{12} - \frac{3146854344153}{16187374862900} a^{11} - \frac{7733201131267}{16187374862900} a^{10} - \frac{143408511661}{647494994516} a^{9} + \frac{3850061435107}{16187374862900} a^{8} + \frac{877576753693}{16187374862900} a^{7} - \frac{858157278049}{3237474972580} a^{6} - \frac{1492696113081}{16187374862900} a^{5} - \frac{215078235987}{8093687431450} a^{4} + \frac{4420248104787}{16187374862900} a^{3} - \frac{3368919733827}{8093687431450} a^{2} + \frac{601107249103}{1618737486290} a - \frac{396949264147}{8093687431450}$, $\frac{1}{80936874314500} a^{17} - \frac{1}{80936874314500} a^{16} + \frac{102734068259}{80936874314500} a^{15} + \frac{7}{4046843715725} a^{14} - \frac{2086787968579}{20234218578625} a^{13} + \frac{301780884331}{4046843715725} a^{12} + \frac{603246860539}{1395463350250} a^{11} + \frac{11609626802053}{40468437157250} a^{10} + \frac{2782080405058}{20234218578625} a^{9} - \frac{2273371463179}{40468437157250} a^{8} + \frac{9019812874253}{40468437157250} a^{7} + \frac{4258480935976}{20234218578625} a^{6} - \frac{10879029263541}{80936874314500} a^{5} + \frac{17596527663869}{80936874314500} a^{4} + \frac{8078254425751}{16187374862900} a^{3} - \frac{6241607229912}{20234218578625} a^{2} - \frac{9913316351396}{20234218578625} a - \frac{2778644849029}{40468437157250}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 584252303.961 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ |
| 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |