Normalized defining polynomial
\( x^{18} - 2 x^{17} - x^{16} - 12 x^{15} - x^{14} - 132 x^{13} - 26 x^{12} + 156 x^{11} + 954 x^{10} + 526 x^{9} + 39 x^{8} - 2266 x^{7} - 3307 x^{6} + 2644 x^{5} + 3665 x^{4} + 2688 x^{3} - 3696 x^{2} - 20 x + 1531 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-102698732184167438329315328=-\,2^{24}\cdot 37^{7}\cdot 401^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{15084301018395933485733323794253844587} a^{17} - \frac{1160006234851355116904721338046955965}{15084301018395933485733323794253844587} a^{16} + \frac{74666252487365110710391645058653844}{190940519220201689692826883471567653} a^{15} - \frac{5687346364174058273624826305433326186}{15084301018395933485733323794253844587} a^{14} + \frac{3896547464158512845975135385125664891}{15084301018395933485733323794253844587} a^{13} + \frac{5484159907897485063417511731032247304}{15084301018395933485733323794253844587} a^{12} + \frac{7410792114775951153445974171293334554}{15084301018395933485733323794253844587} a^{11} + \frac{2340093291346704195389534225226408214}{15084301018395933485733323794253844587} a^{10} - \frac{1428825632604912213856394491769190310}{15084301018395933485733323794253844587} a^{9} - \frac{5389945961042311109229051182609279587}{15084301018395933485733323794253844587} a^{8} + \frac{4780595949097097248727030653101502870}{15084301018395933485733323794253844587} a^{7} - \frac{4869126865452760421922386010478596602}{15084301018395933485733323794253844587} a^{6} + \frac{4693040517055942046207164864266111608}{15084301018395933485733323794253844587} a^{5} + \frac{7204609270132270640191829248568888484}{15084301018395933485733323794253844587} a^{4} + \frac{2142023642968690727762001378464347141}{15084301018395933485733323794253844587} a^{3} - \frac{3285156474523737498916213245662429426}{15084301018395933485733323794253844587} a^{2} - \frac{2620142664978320192972735343243678249}{15084301018395933485733323794253844587} a - \frac{3958558081717003243622855881512793218}{15084301018395933485733323794253844587}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 539138.439176 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||