Normalized defining polynomial
\( x^{18} - 4 x^{17} - 3 x^{16} + 28 x^{15} - 11 x^{14} - 62 x^{13} + 40 x^{12} + 42 x^{11} - 22 x^{10} + 26 x^{9} - 9 x^{8} - 16 x^{7} - 73 x^{6} - 154 x^{5} - 29 x^{4} - 2 x^{3} - 44 x^{2} - 8 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(99714188227072000000000=2^{18}\cdot 5^{9}\cdot 41^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{15} a^{14} + \frac{1}{5} a^{13} + \frac{4}{15} a^{12} + \frac{7}{15} a^{11} + \frac{1}{3} a^{10} - \frac{2}{5} a^{9} - \frac{1}{3} a^{8} + \frac{4}{15} a^{7} - \frac{7}{15} a^{6} + \frac{7}{15} a^{5} - \frac{1}{3} a^{4} + \frac{1}{15} a^{3} + \frac{7}{15} a^{2} - \frac{1}{15} a - \frac{1}{15}$, $\frac{1}{15} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{15} a^{11} - \frac{2}{5} a^{10} - \frac{2}{15} a^{9} + \frac{4}{15} a^{8} - \frac{4}{15} a^{7} - \frac{2}{15} a^{6} + \frac{4}{15} a^{5} + \frac{1}{15} a^{4} + \frac{4}{15} a^{3} - \frac{7}{15} a^{2} + \frac{2}{15} a + \frac{1}{5}$, $\frac{1}{6975} a^{16} + \frac{127}{6975} a^{15} - \frac{8}{465} a^{14} - \frac{85}{279} a^{13} + \frac{74}{225} a^{12} + \frac{2377}{6975} a^{11} + \frac{3101}{6975} a^{10} - \frac{452}{1395} a^{9} - \frac{511}{6975} a^{8} - \frac{16}{279} a^{7} - \frac{41}{465} a^{6} + \frac{1744}{6975} a^{5} - \frac{149}{6975} a^{4} + \frac{551}{6975} a^{3} + \frac{566}{2325} a^{2} + \frac{298}{775} a - \frac{1694}{6975}$, $\frac{1}{429262425} a^{17} + \frac{5882}{85852485} a^{16} + \frac{1831552}{143087475} a^{15} - \frac{316802}{85852485} a^{14} - \frac{106180531}{429262425} a^{13} + \frac{196194154}{429262425} a^{12} + \frac{26324732}{429262425} a^{11} + \frac{100788338}{429262425} a^{10} - \frac{51806011}{429262425} a^{9} + \frac{20213702}{429262425} a^{8} - \frac{143854}{307715} a^{7} - \frac{2586971}{429262425} a^{6} - \frac{157103657}{429262425} a^{5} - \frac{58686706}{429262425} a^{4} - \frac{8502606}{47695825} a^{3} + \frac{14435819}{47695825} a^{2} - \frac{74494793}{429262425} a - \frac{69094549}{143087475}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11517.1066104 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for t18n273 |
| Character table for t18n273 |
Intermediate fields
| 9.1.551368000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |