Normalized defining polynomial
\( x^{18} - 2 x^{17} + 39 x^{16} + 326 x^{15} - 2249 x^{14} + 9080 x^{13} - 123356 x^{12} + 170874 x^{11} - 2261570 x^{10} + 6338506 x^{9} - 26302913 x^{8} + 55536852 x^{7} - 270486935 x^{6} + 110711082 x^{5} - 1270725859 x^{4} - 189474446 x^{3} - 2607092532 x^{2} - 253088998 x - 4850760349 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95932148067115929752721562891599478784=2^{18}\cdot 19^{6}\cdot 97^{5}\cdot 137^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 97, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{17} + \frac{929556849594641957408593757281467849465693791562118425576479629021537366904115044564255}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{16} + \frac{853244886308368828397378821001712233026538999663598744875094865238602502201176752452631}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{15} - \frac{811657982876351239646555074344262329263476674935537262667149191807019246485407910446461}{4763518362378947338121531337605672624371615485777371640295620142265031864074836829374763} a^{14} + \frac{3504484946463655669316842884559183963246326312736196474138604085440137535151575532435297}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{13} - \frac{733873936897654957987757716045103771534765077452292686693663648224233582797665847722323}{9527036724757894676243062675211345248743230971554743280591240284530063728149673658749526} a^{12} + \frac{9222574257133417855606176633290927116157405900357000947719151599706093847305225126549325}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{11} - \frac{1952197790295863148643156421093052593151691122465493646322246669194161712362640118863348}{4763518362378947338121531337605672624371615485777371640295620142265031864074836829374763} a^{10} + \frac{1327612947767613947408650300266257907790633492814316741656941328052585624677106513665045}{4763518362378947338121531337605672624371615485777371640295620142265031864074836829374763} a^{9} + \frac{8215959989310553655869858290748343675482987678323497681913271725643262568474530791134489}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{8} - \frac{3857430088997323784341768508745118677917331042284196883948298982905282758621254634369819}{9527036724757894676243062675211345248743230971554743280591240284530063728149673658749526} a^{7} + \frac{419359680537937485154906007029974445253623137502888566594677267854699397931665843270012}{4763518362378947338121531337605672624371615485777371640295620142265031864074836829374763} a^{6} + \frac{2346329728229569726231717774754101504845795289218637642178590546957545634853720198209661}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{5} + \frac{2025029451572878132314923514372275085163739972990295006088973863694723189243073652285309}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{4} + \frac{3915695592288774259857798184113994376466026875390094959021323881892351405848087952163379}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052} a^{3} + \frac{1075481764709960102339977333334413534241351487168232183163456872677394762137375591019819}{4763518362378947338121531337605672624371615485777371640295620142265031864074836829374763} a^{2} - \frac{4675571095611878050840644797353924809960291908951921447237702273126744642582938271277685}{9527036724757894676243062675211345248743230971554743280591240284530063728149673658749526} a + \frac{4682084949158570190604376963210545678184461121459131990919609237240413022497595759419553}{19054073449515789352486125350422690497486461943109486561182480569060127456299347317499052}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68394260900.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36864 |
| The 108 conjugacy class representatives for t18n691 are not computed |
| Character table for t18n691 is not computed |
Intermediate fields
| 9.9.1128762254528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.18.49 | $x^{12} + 4 x^{11} - 4 x^{10} - 12 x^{9} - 8 x^{8} + 8 x^{7} + 8 x^{6} + 8 x^{5} - 12 x^{4} - 8 x^{3} + 8 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4 \times C_2$ | $[2, 2, 2]^{3}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 137 | Data not computed | ||||||