Normalized defining polynomial
\( x^{18} - 3 x^{17} - x^{16} + 14 x^{15} - 3 x^{14} + 91 x^{13} + 170 x^{12} + 117 x^{11} + 203 x^{10} + 416 x^{9} + 407 x^{8} - 75 x^{7} + 1187 x^{6} + 3232 x^{5} + 372 x^{4} - 388 x^{3} - 460 x^{2} + 180 x - 20 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93446253200208069000000000000=2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{4} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{5}{12} a^{5} - \frac{1}{12} a^{4} + \frac{1}{12} a^{3} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{24} a^{12} - \frac{1}{12} a^{10} + \frac{11}{24} a^{9} - \frac{1}{2} a^{7} + \frac{3}{8} a^{6} + \frac{1}{3} a^{4} + \frac{3}{8} a^{3} + \frac{1}{12} a^{2} + \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{24} a^{11} - \frac{1}{16} a^{10} + \frac{7}{16} a^{9} - \frac{5}{12} a^{8} - \frac{19}{48} a^{7} + \frac{23}{48} a^{6} - \frac{1}{6} a^{5} + \frac{3}{16} a^{4} - \frac{23}{48} a^{3} - \frac{11}{24} a^{2} + \frac{7}{24} a - \frac{1}{24}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{12} - \frac{1}{48} a^{11} + \frac{1}{24} a^{10} + \frac{1}{16} a^{9} + \frac{17}{48} a^{8} + \frac{1}{12} a^{7} + \frac{3}{16} a^{6} + \frac{13}{48} a^{5} + \frac{7}{24} a^{4} + \frac{17}{48} a^{3} - \frac{1}{12} a^{2} - \frac{5}{12} a - \frac{11}{24}$, $\frac{1}{1632} a^{15} - \frac{1}{136} a^{14} + \frac{11}{1632} a^{13} - \frac{23}{1632} a^{12} - \frac{23}{816} a^{11} - \frac{97}{1632} a^{10} - \frac{103}{544} a^{9} + \frac{20}{51} a^{8} - \frac{105}{544} a^{7} + \frac{535}{1632} a^{6} - \frac{389}{816} a^{5} - \frac{253}{544} a^{4} - \frac{203}{816} a^{3} - \frac{41}{204} a^{2} - \frac{55}{816} a - \frac{15}{136}$, $\frac{1}{4896} a^{16} + \frac{1}{4896} a^{15} - \frac{43}{4896} a^{14} + \frac{1}{272} a^{13} - \frac{5}{4896} a^{12} - \frac{49}{4896} a^{11} - \frac{3}{136} a^{10} + \frac{2335}{4896} a^{9} - \frac{607}{1632} a^{8} - \frac{199}{2448} a^{7} + \frac{427}{1632} a^{6} + \frac{1061}{4896} a^{5} - \frac{2147}{4896} a^{4} - \frac{107}{816} a^{3} - \frac{929}{2448} a^{2} + \frac{1133}{2448} a + \frac{163}{1224}$, $\frac{1}{510771273315421536} a^{17} + \frac{4681280591461}{46433752119583776} a^{16} + \frac{10689950176583}{170257091105140512} a^{15} + \frac{98560188531475}{11608438029895944} a^{14} - \frac{1866999552680903}{510771273315421536} a^{13} + \frac{594916301726607}{56752363701713504} a^{12} + \frac{6070767612430795}{255385636657710768} a^{11} + \frac{15724883868287881}{510771273315421536} a^{10} - \frac{197816218819590209}{510771273315421536} a^{9} + \frac{329279049769019}{2902109507473986} a^{8} + \frac{20570716588337321}{46433752119583776} a^{7} + \frac{129427222917402005}{510771273315421536} a^{6} - \frac{57008847379879111}{170257091105140512} a^{5} + \frac{126945423117882029}{255385636657710768} a^{4} + \frac{57140729931293197}{255385636657710768} a^{3} + \frac{33609890615100301}{85128545552570256} a^{2} - \frac{50353929847809391}{127692818328855384} a + \frac{434158221450227}{63846409164427692}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10827008.366670528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 3.1.300.1, 3.1.3675.1, 3.1.14700.1, 3.1.588.1, 6.2.283618125.1, 6.2.92610000.1, 6.2.4537890000.1, 6.2.7260624.1, 9.1.9529569000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 7 | Data not computed | ||||||