Normalized defining polynomial
\( x^{18} - 2 x^{17} - 49 x^{16} + 84 x^{15} + 1320 x^{14} - 2349 x^{13} - 23537 x^{12} + 38942 x^{11} + 309106 x^{10} - 369935 x^{9} - 2888104 x^{8} + 1454633 x^{7} + 19195542 x^{6} + 2085791 x^{5} - 84556770 x^{4} - 40115066 x^{3} + 209940349 x^{2} + 194016950 x - 408451709 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93367623828446393959890781661=101^{9}\cdot 292181^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $101, 292181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{9092186297214936479221129499173652039238455301691507578471616754819} a^{17} - \frac{104766751743487572262142602883549706556705225061572299710616921530}{9092186297214936479221129499173652039238455301691507578471616754819} a^{16} - \frac{2874714153057725024433798246945575443108491799398416869419778871717}{9092186297214936479221129499173652039238455301691507578471616754819} a^{15} - \frac{127493351775908354903047553100711192524311209548434415739189697479}{9092186297214936479221129499173652039238455301691507578471616754819} a^{14} + \frac{1833204552199618693963152927152511856813765886444869549688357800515}{9092186297214936479221129499173652039238455301691507578471616754819} a^{13} + \frac{1791029188839401498914436073212537315513354845572086203305247060191}{9092186297214936479221129499173652039238455301691507578471616754819} a^{12} - \frac{1778042764344903660485431167181322675645953742501263902851088188210}{9092186297214936479221129499173652039238455301691507578471616754819} a^{11} + \frac{337279281563369873572588948947445664579187548596273678654062126183}{9092186297214936479221129499173652039238455301691507578471616754819} a^{10} + \frac{2984144788506613035265708401188436783164390996166465062541988246509}{9092186297214936479221129499173652039238455301691507578471616754819} a^{9} + \frac{4304586238381428933450199183678859042342514141064177443083701284572}{9092186297214936479221129499173652039238455301691507578471616754819} a^{8} - \frac{1092176832736202563021749146453591981818679020023359139189472890208}{9092186297214936479221129499173652039238455301691507578471616754819} a^{7} - \frac{4176696852585880303296300727959965566910117286044579168682507531928}{9092186297214936479221129499173652039238455301691507578471616754819} a^{6} - \frac{1209477977417270961997514345925954472227349747518817244867671049355}{9092186297214936479221129499173652039238455301691507578471616754819} a^{5} - \frac{2776957353433688369891220440478366945294432243521072055950829363832}{9092186297214936479221129499173652039238455301691507578471616754819} a^{4} + \frac{2496645253683280338788487216206222159114477752676218963269843119943}{9092186297214936479221129499173652039238455301691507578471616754819} a^{3} - \frac{41432178705825778840035440865993139449583476760418012725522184597}{9092186297214936479221129499173652039238455301691507578471616754819} a^{2} + \frac{2875937874297297877927503370723821252166434269319972010299082344972}{9092186297214936479221129499173652039238455301691507578471616754819} a - \frac{557625268221740656604281826761191259149720354801352111420541258086}{9092186297214936479221129499173652039238455301691507578471616754819}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12396446.7025 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 725760 |
| The 60 conjugacy class representatives for t18n913 are not computed |
| Character table for t18n913 is not computed |
Intermediate fields
| \(\Q(\sqrt{101}) \), 9.1.29510281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 101 | Data not computed | ||||||
| 292181 | Data not computed | ||||||