Normalized defining polynomial
\( x^{18} - x^{17} - 3 x^{14} + 15 x^{13} + 9 x^{12} - 57 x^{11} + 61 x^{10} - 45 x^{9} + 85 x^{8} - 61 x^{7} - 14 x^{6} + 4 x^{5} + 45 x^{4} + 19 x^{3} - 26 x^{2} - 14 x - 2 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9083809503541921316864=2^{20}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{18727794399627356} a^{17} - \frac{690968217060193}{4681948599906839} a^{16} - \frac{552058246590284}{4681948599906839} a^{15} - \frac{2162962204253396}{4681948599906839} a^{14} - \frac{5883080667912539}{18727794399627356} a^{13} - \frac{1132118861656679}{4681948599906839} a^{12} - \frac{3288846600232183}{18727794399627356} a^{11} - \frac{13049258903474}{4681948599906839} a^{10} + \frac{3619563954177577}{18727794399627356} a^{9} + \frac{1617699278913059}{4681948599906839} a^{8} + \frac{579874913993641}{18727794399627356} a^{7} + \frac{593779653106633}{4681948599906839} a^{6} + \frac{3314367777109289}{9363897199813678} a^{5} + \frac{4172288840307843}{9363897199813678} a^{4} + \frac{7299918092025111}{18727794399627356} a^{3} + \frac{1054438654108807}{9363897199813678} a^{2} + \frac{1605920304783297}{4681948599906839} a + \frac{1264294569185695}{9363897199813678}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17860.4330384 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:D_9$ (as 18T67):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_2^2:D_9$ |
| Character table for $C_2\times C_2^2:D_9$ |
Intermediate fields
| 3.1.59.1, 6.2.3286064.1, 9.1.775511104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.16.9 | $x^{12} + 7 x^{10} + 4 x^{8} + 3 x^{6} - 4 x^{4} - x^{2} - 5$ | $6$ | $2$ | $16$ | $(C_6\times C_2):C_2$ | $[2, 2]_{3}^{2}$ | |
| 59 | Data not computed | ||||||