Normalized defining polynomial
\( x^{18} - 3 x^{17} + x^{16} + x^{15} + 8 x^{14} - 32 x^{13} + 81 x^{12} - 132 x^{11} + 184 x^{10} + 62 x^{9} - 568 x^{8} + 1219 x^{7} - 1445 x^{6} + 976 x^{5} - 228 x^{4} - 384 x^{3} + 576 x^{2} - 320 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90022298341717743394937=23^{7}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{3}{16} a^{4} + \frac{1}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{7}{32} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{8} - \frac{1}{16} a^{7} + \frac{3}{8} a^{6} - \frac{5}{32} a^{5} + \frac{9}{32} a^{4} + \frac{5}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{13186047202321191232} a^{17} - \frac{118886985864805877}{13186047202321191232} a^{16} + \frac{68163539556227339}{13186047202321191232} a^{15} - \frac{693605582417340093}{13186047202321191232} a^{14} + \frac{814394559540881237}{6593023601160595616} a^{13} + \frac{237532932342108377}{3296511800580297808} a^{12} + \frac{152084593330638673}{13186047202321191232} a^{11} - \frac{392151479319417555}{6593023601160595616} a^{10} - \frac{234140632763631291}{3296511800580297808} a^{9} + \frac{319855003649811591}{6593023601160595616} a^{8} + \frac{723688274286336175}{3296511800580297808} a^{7} + \frac{6229459518598787947}{13186047202321191232} a^{6} + \frac{65412293737063973}{13186047202321191232} a^{5} - \frac{2095335006716741645}{6593023601160595616} a^{4} - \frac{309073402464783835}{1648255900290148904} a^{3} + \frac{132303590559796597}{1648255900290148904} a^{2} - \frac{47816661609904206}{206031987536268613} a - \frac{46016716135178475}{206031987536268613}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21587.3825455 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_4$ (as 18T69):
| A solvable group of order 144 |
| The 15 conjugacy class representatives for $S_3\times S_4$ |
| Character table for $S_3\times S_4$ |
Intermediate fields
| 3.1.23.1, 3.1.31.1, 6.2.685193.1, 9.1.362467097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $31$ | 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 31.12.9.1 | $x^{12} - 961 x^{4} + 268119$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ |