Normalized defining polynomial
\( x^{18} - 8 x^{17} + 10 x^{16} + 32 x^{15} - 44 x^{14} + 133 x^{13} - 49 x^{12} - 606 x^{11} + 408 x^{10} - 2556 x^{9} - 3321 x^{8} + 7460 x^{7} + 3307 x^{6} + 30 x^{5} + 11772 x^{4} - 124 x^{3} - 20735 x^{2} - 72486 x - 79357 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(899278084981108087628637469=23^{7}\cdot 43^{6}\cdot 347^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 43, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{9} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{2}{9} a^{7} - \frac{4}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} + \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{315} a^{16} - \frac{2}{45} a^{15} - \frac{2}{7} a^{14} + \frac{46}{105} a^{13} + \frac{43}{315} a^{12} - \frac{107}{315} a^{11} + \frac{136}{315} a^{10} + \frac{136}{315} a^{9} + \frac{83}{315} a^{8} + \frac{97}{315} a^{7} + \frac{8}{63} a^{6} + \frac{47}{315} a^{5} + \frac{29}{63} a^{4} + \frac{137}{315} a^{3} + \frac{25}{63} a^{2} + \frac{14}{45} a + \frac{22}{315}$, $\frac{1}{140519105666158702659137975550319150203675} a^{17} + \frac{139531329140109744787152829134046019954}{140519105666158702659137975550319150203675} a^{16} - \frac{3901890162640359144995972163928207377767}{140519105666158702659137975550319150203675} a^{15} - \frac{1029783944723019685244500261736830852822}{2755276581689386326649764226476846082425} a^{14} - \frac{40019020622964729504932456777805748507958}{140519105666158702659137975550319150203675} a^{13} + \frac{64406664704550882624064422055593458734712}{140519105666158702659137975550319150203675} a^{12} + \frac{3324923091226848949091557064371009003609}{28103821133231740531827595110063830040735} a^{11} - \frac{61059109940876474209847804170337002950016}{140519105666158702659137975550319150203675} a^{10} - \frac{16917169604880027314077074640800502944628}{46839701888719567553045991850106383401225} a^{9} + \frac{22775280538800395544914676562939080606212}{46839701888719567553045991850106383401225} a^{8} - \frac{67699338803954481795767238305084748878389}{140519105666158702659137975550319150203675} a^{7} + \frac{6613533762353145168013099664012465772138}{15613233962906522517681997283368794467075} a^{6} + \frac{5905327568835363937271246348058868086154}{15613233962906522517681997283368794467075} a^{5} - \frac{19411500917183408710906757708112777430771}{46839701888719567553045991850106383401225} a^{4} + \frac{3495284002810044834914180744271604386398}{8265829745068158979949292679430538247275} a^{3} - \frac{31200263574205171962194703943755973666232}{140519105666158702659137975550319150203675} a^{2} + \frac{7549443072426099556289097484934410833634}{15613233962906522517681997283368794467075} a + \frac{19609220925682895570378115060967903203661}{140519105666158702659137975550319150203675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 660863.733875 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.1.23.1, 9.3.181543807.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43 | Data not computed | ||||||
| 347 | Data not computed | ||||||