Normalized defining polynomial
\( x^{18} - 9 x^{17} + 27 x^{16} + 84 x^{15} - 810 x^{14} + 2286 x^{13} + 30 x^{12} - 17712 x^{11} + 49635 x^{10} - 37579 x^{9} - 60795 x^{8} - 376128 x^{7} + 1198338 x^{6} - 3779586 x^{5} - 3956958 x^{4} + 9731004 x^{3} - 17365923 x^{2} - 3206385 x + 37749839 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8636886144486190692792838720008000000000=2^{12}\cdot 3^{32}\cdot 5^{9}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $165.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{3} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{18} a^{8} + \frac{1}{18} a^{7} + \frac{1}{18} a^{5} - \frac{4}{9} a^{3} - \frac{1}{9} a^{2} + \frac{2}{9} a - \frac{7}{18}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{18} a^{6} + \frac{1}{9} a^{5} + \frac{1}{18} a^{4} - \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{36} a^{12} - \frac{1}{36} a^{10} - \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{1}{36} a^{6} + \frac{1}{18} a^{5} - \frac{1}{3} a^{4} - \frac{7}{18} a^{3} + \frac{5}{36} a^{2} - \frac{4}{9} a - \frac{13}{36}$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{11} - \frac{1}{18} a^{9} + \frac{1}{18} a^{8} - \frac{1}{36} a^{7} + \frac{1}{18} a^{6} - \frac{1}{3} a^{5} - \frac{7}{18} a^{4} + \frac{5}{36} a^{3} - \frac{4}{9} a^{2} - \frac{13}{36} a$, $\frac{1}{108} a^{14} - \frac{1}{108} a^{13} - \frac{1}{108} a^{12} + \frac{1}{108} a^{11} + \frac{1}{54} a^{10} - \frac{1}{27} a^{9} - \frac{7}{108} a^{8} + \frac{1}{108} a^{7} - \frac{1}{54} a^{6} - \frac{4}{27} a^{5} + \frac{25}{108} a^{4} + \frac{49}{108} a^{3} + \frac{13}{108} a^{2} - \frac{19}{108} a - \frac{5}{54}$, $\frac{1}{108} a^{15} + \frac{1}{108} a^{13} - \frac{1}{54} a^{10} + \frac{1}{108} a^{9} - \frac{1}{27} a^{7} + \frac{1}{18} a^{6} - \frac{1}{4} a^{5} + \frac{8}{27} a^{4} + \frac{23}{108} a^{3} - \frac{1}{2} a^{2} + \frac{10}{27} a + \frac{2}{27}$, $\frac{1}{324} a^{16} + \frac{1}{324} a^{15} - \frac{1}{324} a^{14} + \frac{1}{162} a^{12} - \frac{7}{324} a^{11} + \frac{1}{324} a^{10} - \frac{1}{108} a^{9} + \frac{1}{81} a^{8} - \frac{1}{108} a^{7} + \frac{25}{324} a^{6} - \frac{95}{324} a^{5} - \frac{49}{324} a^{4} + \frac{5}{27} a^{3} + \frac{25}{162} a^{2} + \frac{17}{324} a - \frac{37}{162}$, $\frac{1}{111943593827764300397871154822502874997693764} a^{17} - \frac{12731284458999779317607924619225942984313}{111943593827764300397871154822502874997693764} a^{16} - \frac{1379060432265763396662044007544600852981}{18657265637960716732978525803750479166282294} a^{15} - \frac{385116609296895534092796572059594867344631}{111943593827764300397871154822502874997693764} a^{14} + \frac{625544202770415686789691905645391104167817}{111943593827764300397871154822502874997693764} a^{13} - \frac{11323803644273636921596723066331646601475}{27985898456941075099467788705625718749423441} a^{12} - \frac{224284160221093773339353633673690852682687}{12438177091973811155319017202500319444188196} a^{11} - \frac{1482056865466674601974085345652756962293185}{111943593827764300397871154822502874997693764} a^{10} - \frac{2317071995649623593891500244388988608074625}{111943593827764300397871154822502874997693764} a^{9} + \frac{789288084176556039986904038226253655447014}{27985898456941075099467788705625718749423441} a^{8} + \frac{4555272903152415497827076082516761499550969}{111943593827764300397871154822502874997693764} a^{7} - \frac{7166303084095263077876525196486038492682745}{111943593827764300397871154822502874997693764} a^{6} - \frac{3158868074047487536074842146426814318682595}{18657265637960716732978525803750479166282294} a^{5} + \frac{34044429924938853703788826817674515171799169}{111943593827764300397871154822502874997693764} a^{4} - \frac{28981297045276104875136561142204393120955713}{111943593827764300397871154822502874997693764} a^{3} - \frac{6401161670978894601294239368438622114892337}{55971796913882150198935577411251437498846882} a^{2} + \frac{5018420722490744842259302711847210202783479}{18657265637960716732978525803750479166282294} a - \frac{5810447632214804031725273920281277758005930}{27985898456941075099467788705625718749423441}$
Class group and class number
$C_{3}\times C_{9}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 491197739129.93445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.867.1, 6.2.93961125.1, 9.1.66498764695119936.21 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.10.3 | $x^{6} + 36$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.22.93 | $x^{12} + 81 x^{11} - 81 x^{10} + 51 x^{9} + 63 x^{8} - 108 x^{7} - 93 x^{6} + 108 x^{5} + 72 x^{3} + 108 x^{2} - 81 x + 90$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[2, 5/2]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |