Normalized defining polynomial
\( x^{18} - 3 x^{17} + 4 x^{16} - 2 x^{15} - 12 x^{14} + 26 x^{13} - 65 x^{12} + 10 x^{11} + 128 x^{10} - 355 x^{9} + 466 x^{8} - 394 x^{7} + 130 x^{6} - 364 x^{5} + 188 x^{4} + 42 x^{3} + 210 x^{2} - 136 x - 113 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(84452981700195737623001=7^{12}\cdot 41^{3}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{12134177503810010628469349819} a^{17} + \frac{492982679173954791906446957}{12134177503810010628469349819} a^{16} - \frac{1979994308524085138318988530}{12134177503810010628469349819} a^{15} + \frac{4207395210025891404860779375}{12134177503810010628469349819} a^{14} - \frac{201745677877460602122803920}{12134177503810010628469349819} a^{13} + \frac{1497946232848338787987604449}{12134177503810010628469349819} a^{12} - \frac{1780160256464964221919793713}{12134177503810010628469349819} a^{11} - \frac{3801438500471319452737890257}{12134177503810010628469349819} a^{10} - \frac{2004678625143476396887671566}{12134177503810010628469349819} a^{9} + \frac{5061198254893560001744501443}{12134177503810010628469349819} a^{8} + \frac{755782022259636913610563199}{12134177503810010628469349819} a^{7} - \frac{2073682921844658410641318107}{12134177503810010628469349819} a^{6} + \frac{4272976318750889923001635626}{12134177503810010628469349819} a^{5} - \frac{3003588771834173689695071674}{12134177503810010628469349819} a^{4} - \frac{2741416099144291178271001838}{12134177503810010628469349819} a^{3} + \frac{1768424896816953252028630243}{12134177503810010628469349819} a^{2} - \frac{4307806770105822278073985106}{12134177503810010628469349819} a + \frac{4393973880399575748802638336}{12134177503810010628469349819}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11681.4446341 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.467890073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||
| 97 | Data not computed | ||||||